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Resumo 

 O movimento humano tem sido sempre um assunto de grande interesse para a ciência. Nas 

últimas décadas métodos centrados em sistemas Multicorpo têm sido aplicados com sucesso no 

desenvolvimento desta área. Dentro de um largo espectro de aplicações destas metodologias pode 

destacar-se o desenvolvimento de novos dispositivos médicos (i.e. Ortóteses e Próteses) e a 

simulação das consequências de algumas intervenções médicas. Assim, uma boa modelação da 

perna e do pé é crucial para a compreensão cinemática e dinâmica do movimento humano, e 

eventualmente para analisar disfunções a este nível. 

 Neste trabalho, apresenta-se um novo modelo dinâmico tridimensional da  perna e do pé, 

com quatro segmentos (Perna, Retro-pé, Médio-pé e Ante-pé, e Dedos), seis corpos rígidos e treze 

graus de liberdade. O principal objetivo do modelo é a sua aplicação num software integrado de 

multicorpo dinâmico com coordenadas naturais – Apollo. O modelo é testado usando simulações de 

dinâmica inversa, aplicando um novo protocolo de marcadores reflectores para adquirir a informação 

necessária para a análise. 

 Os resultados são obtidos com ensaios realizados com dois participantes, proporcionando no 

geral, resultados cinemáticos e cinéticos consistentes e realistas. Entre eles destacam-se alguns 

padrões conhecidos como os momentos e a variação angular gerados nas articulações 

subastragalina, tibioperoneoastragálica e metatarsofalângica que sustentam a robustez do modelo. E 

alguns resultados inovadores como o momento e variação angular na articulação médiotársica que 

proporciona uma nova compreensão sobre os graus de liberdade do pé, abrindo portas para uma 

possível análise de diferentes disfunções na marcha. 

 

Palavras-chave 

Pé Multissegmentado, Modelos de pé, Multicorpo, Cinética, Cinemática, Análise de Marcha 
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Abstract 

The human movement has always been a subject of great interest to science. In the last 

decades Multibody systems-based methodologies have been successfully applied in development of 

this field. Among the broad range of application of these methodologies one can highlight the 

development of new medical devices (e.g. Orthosis and Prosthesis) and the simulation of the outcome 

of some medical procedures. Therefore, a proper leg and foot modulation is crucial to understand the 

kinematics and dynamics of the human movement, and eventually to analyze dysfunctions at this 

level. 

In the present work, a novel three dimensional leg and foot dynamic model with four segments 

(Leg, Rear-foot, Mid-foot and Fore-foot, and Toes), six rigid bodies and thirteen degrees-of-freedom, is 

presented. The main objective of the model is its application in a built-in multibody dynamics software 

with natural coordinates – Apollo. The model is tested using inverse dynamic simulations, applying a 

new marker set protocol to acquire the necessary data to perform the analysis. 

The results were based on a set of trials performed onto two subjects, providing overall 

consistent and realistic kinematic and kinetic results. Among them, some well know patterns like the 

torques and angle variations generated at the talocrural, talocalcaneal and metatarsophalangeal joints 

support the robustness of the model. And some innovative results like the angle variation and torque 

generated at the midtarsal joint provides a new insight over foot analysis, opening doors to the 

possible evaluation of different gait disorders. 

 

Keywords 

Multi-segment foot, Foot models, Multibody, Kinetics, Kinematics, Gait analysis 
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Chapter I 

1. Introduction 

This introductory chapter is intended to expose the motivation and the objectives for this 

Thesis and to briefly describe the state of the art of the scientific field that it belongs. 

 

1.1. Motivation 

The human body has been studied for centuries; one can say that the first human studies 

were performed by the Egyptian culture thousands of years before Christ. The interest in the human 

body was also present in the ancient Greece (600 B.C. – 200 A.C.), were the society lived by the 

motto Mens sana in corpore sano (a healthy mind in a healthy body). The quest for knowledge about 

our specie was kept active for periods in human history like The Renaissance (1450 – 1600 A.C.) and 

The scientific Revolution (1600 – 1730 A.C.). The nineteenth century it’s known among the 

Biomechanics community as the Gate Century, in part because the first’s quantitative locomotion 

studies were performed by Etienne Marey in the first biomechanics laboratory. It was also in this 

period that the first’s electromyographies were performed. The twentieth century brought the definition 

of the word Biomechanics, the study of the mechanical principles of living organisms (Hall, 2011). This 

century provided a fast development in the biomechanics area, especially due to the world wars that 

lead to an investment in the medical investigation. A. V. Hill received a Nobel Prize in the medical area 

due to his study over the function and structure of the muscles (Martin, 1999). 

In the present century human locomotion continues to be of great interest to science, namely, 

the analysis of athlete’s action in order to improve their performance and reduce their injury probability 

(Bahr & Krosshaug, 2005; Lees et al., 2010), the optimization of sports equipment (Dabnichki, 1998), 

the evaluation of surgical procedures (Abuzzahab et al., 1993; Delp, 1990), the improvement of 

performance and comfort of prostheses and orthoses (Vasconcelos, 2010), the creation of databases 
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that can compare pathological and non-pathological gait patterns (Gonçalves, 2010), gait analysis and 

ergonomic studies (Abuzzahab et al., 1993; Kidder et al., 1996; Leardini et al., 1999; Meglan, 1991; 

Silva, 2003), the implementation of human gate patterns in robots (Hyon & Cheng, 2007), among 

others. 

This broad range of applications is possible in part due to the fact that computer modeling and 

simulation has reach unprecedented levels in recent years, mainly because of the growing belief that 

this approach can provide more quantitative explanations of how the neuromuscular and 

musculoskeletal systems interact to produce movement. The use of these computational tools, namely 

multibody system-based models is powered by this continuum increase of computers capacity; with 

the technology available today it is already possible to simulate reliable and realistic human models 

that take into account many degrees of freedom, muscles and tendons (Pandy, 2001).  

The present computational power, acquisition instruments and mathematical methods enables 

the simulation of complex structural systems like the human foot and ankle with no need to use 

invasive procedures. The foot can be described as a multi-joint structure which serves as an 

intermediate between the ground and the rest of the body.  This complex structure serves to support 

and propel the body, transfer forces from the ground, and provide rotation for adaptations to all kinds 

of terrain. Dysfunctions of the foot can cause instability or disability of motions, so the kinematic 

modeling of the leg and foot complex is therefore a major goal in biomedical investigations (Leardini et 

al., 1999; Myers et al., 2001). Despite being a high focus area of research, the majority of the existing 

kinetic foot models lack some resemblance to the human motion. They do not take into account some 

movements that are easily detected by the human eye. The experience arising from gait evaluation 

points towards the development of more reliable and robust models. The present thesis tries to fulfill 

this gap, presenting a new and realistic tridimensional multibody model of the leg and foot complex 

that can improve the reliability of a human locomotion simulation. 

 

1.2. Objectives 

The main purpose of the present work is the development of a new tridimensional multibody 

model, using Natural coordinates, of the leg and foot that enables a realistic and reliable 

representation of its kinematic and dynamic behavior both in analysis and simulation, and that allows 

in the future for an efficient and accurate representation of the foot-ground interaction. There are a 

great number of models that represent the entire foot as a single rigid body (Pandy & Berme, 1988; 

Silva, 2003; P. C. Silva et al., 2010), despite being efficient for 2D modeling and for simple human 

movements they are inadequate to depicture real 3D human gait motion. In this field there are also 

some detailed studies that consider the foot as two (hind-foot and toes) (Anderson & Pandy, 1999; 

Moreira, 2009; Vilà, 2012) or three rigid bodies (calcaneus, talus and toes), in order to improve the 

resemblance to real human motion (Delp, 1990). In this study an alternative approach to a three rigid 

body’s foot is proposed: (1) rear-foot (calcaneus), (2) mid-foot (cuboid, navicular and cuneiforms) and 

fore-foot (metatarsals), and (3) toes (phalanges). This division emerged from the laboratory 

experience on gait evaluation, were the foot main segments can be noticed as the ones referred 

before. The separation is supported by arthrology studies such as the one provided by Isman & Inman 
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(1969), Hicks (1952) and Gray (1989). The model will also comprehend the leg (tibia and fibula), 

represented by a fourth segment. 

In a first stage an anthropometric study of the foot will be necessary. The basis of this 

anthropometric study will be the work made by Anderson & Pandy (1999), where the foot is 

represented by a two segment structure (hind-foot and toes) and the report performed by and Parham 

et al. about the foot lengths. An anthropometric table will be developed, in which all of its inputs should 

be parameterized; the mass of each segment will be represented as a percentage of the total body 

mass, the length of each segment will be represented as a percentage of the foot length, except for 

the leg, which will be represent as a percentage of the height. This table should also present 

parameterized positions of the center of mass and inertias of each segment. The final table should be 

able to generate all the anthropometric measures needed for the next step, knowing only three input 

parameters: weight, height and foot size.  

The following stage is centered on the creation of the multibody model using Natural 

coordinates, where the academic software Apollo (Silva, 2003)  will have a central role. The model 

should be developed in order to be tested by this software, additional Fortran routines should be 

added to the program in case of need. A fully functional dynamic model is supposed to be developed 

by the end of this phase; the formulation must respect the necessary constraints that are imposed by 

the software. 

The final stage comprehends the application of the model to a gait cycle, in order to study the 

foot-ground interaction, using an inverse dynamics analysis. This will require the formulation of a 

markers set protocol that incorporates the necessary information to represent the model proposed and 

that enables data processing to generate the remaining files to be used by  Apollo (Silva, 2003). 

Having the necessary files to run the software, results as the angles between the bodies, joint 

moments and internal reaction forces will be generated and analyzed.  

 

1.3. Literature Review 

In order to develop a computational model that represents realistically and reliably the human 

foot, many aspects have to be taken into account. Anthropometry is the basis of any model, it is 

crucial that the models’ parameters are based on realistic human measures. The model is then 

formulated in order to be implemented in adequate software. To prove the correct performance of the 

model, kinematic, inverse and forward dynamic tests are to be performed. The following sections 

report the state of the art of the aspects mention above.  

 

1.3.1. Anthropometry 

Recent anthropometric studies are scarce; the majority of the available studies were 

performed during the twentieth century. Even rarer are the anthropometric studies that consider the 

foot as more than a simple segment.  This imposes an increased degree of difficulty in the 

construction of human models, which is amplified in the present case due to the complex 

anthropometry and subtle movements of the foot. Within these studies an informal division can be 

applied: the studies that comprise only the lengths or volumes of the segments (Parham et al., 1989); 
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the studies that report masses, inertias and centers of mass of the segments (McConville et al., 1980) 

and last but not least the studies that evaluate the joints motion and mobility (Isman & Inman, 1969). 

 

1.3.1.1. Segments Lengths and Volumes 

Regarding anthropometric studies that comprises segments lengths or volumes it is important 

to make a brief historical introduction. The interest in the human body proportions as a subject of study 

started by calculating relations between body segments. The oldest study in this field remounts to the 

ancient Egypt (3000 B.C.), it uses the distance between the ground (sole) and the ankle as a unit of 

measurement and defines the height of the human body equal to 21.25 units. Another unit of 

measurement that was also introduced by the Egyptians, was the length of the middle finger; in this 

case the body height was set equal to 19 units. The pursuit of a standard measurement continued 

during the ancient Greece and a new unit of measurement was introduced in 500 B.C. The width of 

the palm at the base of the fingers; in this case the height of the body was considered to be 20 units. 

Vitruvius, an ancient Roman architect (100 B.C.) established that the body height was equal to the 

arm spread, this created a square limited by two horizontal lines (the sole and the top of the head) and 

two vertical lines (at the finger tips). Leonardo da Vinci adopted this square for his studies, and he 

later modified it by a circle around the human figure (Drillis et al., 1964). 

A jump in the temporal line brings the human segments lengths studies to the eighteenth 

century, when the firsts controlled studies were performed. In Germany Harless used the immersion 

method (determination of how much water is displaced by a submerged segment) to determine the 

absolute length of the segments (in centimeters) and the relative length using the hand as a standard 

unit. In 1858 he publishes his results in a text book on Plastic Anatomy, and in 1860 a treatise, The 

Static Moments of the Human Body Limbs. Although extremely complete and innovator for the time, 

this study considered the foot as a single segment. In 1884 Meeh using the same method as Harless, 

investigated the body segment volumes and for the first time the foot is studied as three different 

segments, base of the foot, middle foot and toes. Many other studies were performed using the 

immersion method during the eighteenth and nineteenth centuries (Drillis et al., 1964).  

The interest in human anthropometric studies continued for many years, having a 

considerable growth during and post wars and stagnating in the present century. Two different types 

of studies can be considered, the ones that use direct measurements and the ones that use 

computational models to calculate segments parameters. Regarding the first type, Contini (1972), De 

Leva (1996) and Anderson & Pandy (1999) present complete academic studies with different types of 

subjects. As mentioned previously anthropometry has high focus during war periods, due to this fact 

military data is of high importance in this field (Chandler et al., 1975; Clauser et al., 1969; Mcconville & 

Churchill, 1981; Parham et al., 1989). Computational methods to estimate body parameters were 

introduced by Harless (Drillis et al., 1964) and are still used today. Jensen (1975), Hatze (1980) built a 

model based on direct measurements from different subjects, Anderson & Pandy (1999) used this tool 

to compute the parameters regarding the foot segment only and Vilà (2012) used motion capture 

software to calculate average segment lengths. 
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Paying special attention to the information regarding the foot, one comes across an immediate 

finding; this body part is in the majority of times considered as a unique segment, being reported with 

only the foot size. Despite this fact, the US Army Natick Research, Development and Engineering 

Center produced a complete report about the anthropometry of the foot lower leg, presenting 

important measures about different aspects of the foot (Parham et al.,1989). Anderson & Pandy 

(1999)  and  Vilà (2012) also took a different approach, considering the foot as a two segment 

structure. The first ones representing the volume of each segment as a set of interconnected vertices. 

 

1.3.1.2. Masses, Inertias and Centers of Mass 

Knowing the mass, inertia and centers of mass of the segments that form the human body is 

extremely important in many fields of science. While the specific information may vary from author to 

author, the objective is common to all, to fully comprehend the biomechanics of the human body 

(Clauser et al., 1969). Like in the previous section, a division can be made regarding this topic, the 

studies that comprise direct measurements from subjects and the ones that use computational 

methods. In the first category Clauser et al. (1969) used thirteen male cadavers and dissected them 

into fourteen segments, Contini (1972) performed different measurements in living American 

individuals, Chandler et al (1975) in a military study used six cadavers and dissected them into 

fourteen segments, Mcconville & Churchill (1981) in a different military study used thirty one living 

subjects, De Leva (1996) proposed a correction to Zatsiorsky-Seluyanov's parameters on Caucasian 

living subjects and Anderson & Pandy (1999) used five male living subjects to obtain the masses, 

inertias and centers of mass of each segment. For the computational type: Hanavan (1964) 

represented the human body by a set of simple geometric shapes and uniform densities; Jensen 

(1975) estimated the inertial properties of each segment based on the assumption that the body is 

composed of elliptical zones and that the segment densities are known; Hatze (1980) built a 

computational model that calculates the inertial properties of each segment based on direct 

measurements taken from different individuals; Anderson & Pandy (1999) complemented their data of 

living human subjects with a computational model for the feet and Vilà (2012) also used computational 

based methods to calculate these parameters for the studied model. 

In the majority of the works described above the foot is once again treated as a single 

segment, only Anderson & Pandy (1999) and Vilà (2012) made an effort to specify this information for 

two different foot segments (Hind-foot and Toes). 

 

1.3.1.3. Foot Joints Motion 

The foot is an extremely complex system due to its large number of bones, ligaments, 

tendons, muscles and joints. The motion study of the foot takes great interest in evaluating the allowed 

degrees of freedom in each joint. Manter (1941) studied in great detail the movements in the subtalar 

and midtarsal joints. He arrived to the conclusion that the subtalar joint can be represented by one 

axis that allows screw like movements. The midtarsal joint can be represented by two axes, one that 

allows the fore part of the foot to rotate around a longitudinal axis with a screw like movement with 

opposite direction to that of the subtalar joint. The second axis lies obliquely in the foot and the 
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movement around this axis causes a marked change in the shape of the longitudinal arch. Manter also 

concluded that the pronation at the subtalar joint is accompanied by eversion in the midtarsal joint. 

Hicks (1953) proved that all the movements in the foot are described by rotations. His experiments 

demonstrated that in natural conditions and excluding the toes, these rotations occur at the ankle (two 

axes), at the midtarsal joint (two axes) and at tarsometatarsal joint (five ray joints described in the 

document). The movements were described as: the whole foot undergoes flexion extension upon the 

fixed leg (the flexion is accompanied by slight supination and the extension by slight pronation); the 

part distal to the talus in addition undergoes pronation-abduction-extension and supination- adduction-

flexion; the part distal to the midtarsal joint in addition undergoes (approximate) pronation-supination; 

the forepart of the foot in addition undergoes a pronation-supination twist. 

 Special attention has been dedicated to the study of the ankle joint. Barnett & Napier (1952) 

studied the axis of rotation of the ankle joint in man and its influence upon the form of the talus and the 

mobility of the fibula.  The authors arrived to the conclusion that the axis of rotation of this joint 

changes according to the foot movements. The axis is inclined downwards and laterally during 

dorsiflexion, and downwards and medially during plantar-flexion. Isman & Inman (1969) performed an 

exhaustive study, based on cadavers, about the talocalcaneal and talocrural joint. The measurements 

obtained from the experiments indicate that these joints can be considered as non-intersecting single-

axis joints for purposes of bracing but that the variation in the positions of the different axes is such 

that they require individual determination. Figure 1.1 represents one of the measurements considered 

in this study, the perpendicular distance between these two axes. 

 

Figure 1.1 - Perpendicular distance between the axis of the talocrural and talocalcaneal joints (Isman & Inman, 
1969). 

A muscle force model was used by Procter & Paul (1982) to describe the action of the talocrural and 

midtarsal joint. Dul & Johnson (1985) developed a mathematical model that studied the motion of the 

foot with respect to the leg. This model had two input variables, namely: plantar-flexion/dorsiflexion 

angle and inversion/eversion angles. The authors modeled a three rigid body system: leg, talus and 

foot where the segments were connected by hinge joints, represented in Figure 1.2. An important 

consideration made in this work was the position of the talus segment, limited above by the line 

between the two malleolus and bellow by the line between a navicular point and the calcaneous point. 
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In the model used by Anderson & Pandy (1999), the authors intersected the talocrural and 

talocalcaneal joint in order to decrease integration time, and described the motion between the mid-

foot and toes through the metatarsophalangeal joint. 

 

Figure 1.2 - Kinematic model of the human ankle (Dul & Johnson, 1985). 

 

1.3.2. 3D Multisegment Lower Extremity Models 

Lower extremity models are of great importance in the study of human movement, especially 

in locomotion analysis. These models allow, among other aspects, the comparison between normal 

and pathological gait, the development of improved prostheses and orthoses, and the improvement of 

sports performance. 

 

1.3.2.1. Kinematic Models – Markers Protocol 

The mechanical analysis of the foot while performing an activity, such as gait has been a 

challenge for many years. Problems as the inability to measure in vivo foot kinematics, the moderate 

scientific results arousing from qualitative measurements, and invasive approaches used during 

measurements were the main barriers in the progress of human motion analysis. Presently 3D 

stereophotogrammetric analysis (method for the study of joint kinematics in humans) is based on a 

procedure using skin-mounted markers, arrays of markers or a combination of both is the standard 

approach used by gait laboratories (Deschamps et al., 2011). 

In the last two decades many researchers have used this method to develop foot models 

using smaller segments, instead of considering the foot as a whole, the so called 3D multisegment 

foot models (3DMFMs) (Deschamps et al., 2011). The number of 3DMFMs existent is currently too 

broad; however there are two models that stand out due to the number of clinical studies that applied 

them. The first, developed by Kidder et al. (1996) describes a system designed to track 3D motion of 

the leg (tibia and fibula), hind-foot (calcaneus, talus and navicular), fore-foot (cuneiforms, cuboid and 

metatarsals), and toes (phalanges and hallux) segments during both stance and swing phases of the 

gait cycle. A total of twelve markers (9 markers and a triad) were used in this protocol to represent the 

model, depicted in Figure 1.3. This model is known as the Milwaukee Foot Model (MFM) (Deschamps 

et al., 2011). The same model and protocol was used by Myers et al. (2001) to describe the 
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kinematics of pediatric gait during both stance and swing. The MFM is widely used in kinematic clinical 

studies such as: ankle arthrosis (Khazzam et al. 2006), systemic rheumatoid arthritis (Khazzam et al., 

2007), hallux rigidus (Canseco et al., 2008, 2009), and posterior tibial tendon dysfunction (Marks et al., 

2009; Ness et al., 2008). Long et al. (2010) studied the repeatability and sources of variability 

associated with the assessment of segmental foot kinematics using MFM during multiple testing 

sessions at two different test sites. 

 

Figure 1.3 – Markers protocol of the Milwaukee Foot Model (MFM) (Kidder et al., 1996).  

The second, the Oxford Foot Model (OFM), named after the city where it was developed, was 

thought by Carson et al. (2001). The authors used a four segment foot model: leg (tibia and fibula), 

hind-foot (calcaneus and talus), fore-foot (five metatarsals) and hallux. The acquisition is performed 

through seventeen markers (fifteen normal markers and two stick markers). This model is commonly 

used in clinical analysis; some examples of that are: children treated for congenital talipes 

equinovarus (Theologis et al., 2003) and rheumatoid arthritis (Turner et al., 2006; Turner & Woodburn, 

2008; Woodburn et al., 2004).  

Other important studies are worth to mention due to their relevance in the area. Leardini et al. 

(1999) designed a technique to describe the ankle and other foot joints rotation, using a five segment 

leg-foot model: leg (tibia and fibula), calcaneus, mid foot (navicular, cuneiforms and cuboid), first 

metatarsal and hallux. The kinematics was accessed using five clusters, attached to each segment, 

with four markers each. MacWilliams et al. (2003) established a nine-segment foot model, in order to 

present results of a kinematic and kinetic normal database of adolescent population. The segments 

described in this study are: hallux, medial toes, lateral toes, medial fore-foot, lateral fore-foot, 

calcaneus, cuboid, talus/navicular/cuneiforms and tibia/fibula. The data was obtained through a 

nineteen marker set protocol. Simon et al. (2006) developed and evaluated a kinematic measurement 

method for the foot that could be applied clinically to measure foot function including all typical foot 

deformities.  The process is referred as Heidelberg method and does not model rigid foot segments; 

instead it describes the angular orientation of anatomical landmarks. Leardini et al. (2007) proposed a 

new protocol designed to track a large number of foot segments during the stance phase of gait using 

the smallest possible number of markers, oriented to foot pathological patients. The study segmented 

the foot into leg (tibia and fibula), calcaneus, mid-foot (navicular, cuboid and cuneiforms) and 
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metatarsus. This protocol is established based on fourteen reflective markers. Recently a study using 

pediatric participants used a markers protocol designed to divide the leg and the foot into four 

segments: leg (tibia and fibula), hind-foot (calcaneus and talus), fore-foot (navicular, cuboid, 

cuneiforms, and metatarsals) and hallux (proximal and distal phalanges). The protocol applied in that 

study used sixteen reflective markers (Bruening et al., 2012a). 

A different approach was used by Lundgren et al. (2008), in order to describe the kinematics 

of the tibia, fibula, talus, calcaneus, navicular, cuboid, medial cuneiform, first and fifth metatarsals 

during gait, the author used invasive bone anchored external markers. The protocol was defined 

through nine intracortical pins, inserted in the bones mentioned before; each pin was attached with a 

triad of reflective markers. The proposed procedure was developed to avoid some problems that arise 

from reflective markers protocols/ kinematic models such as: skin movement artifacts, assumptions 

that state that individual bones of the foot do not move relatively to each other and descriptions of foot 

and ankle kinematics may be incomplete because not all foot bones are included in the 

measurements. 

  

1.3.2.2. Kinetic Computational Models 

As seen before, there are a great number of kinematic studies of the foot, however complete 

and realistic foot models for dynamic simulations are limited. With the computational increasing power 

came the interest of developing in silico models of the human motion that can quantitatively evaluate 

velocities, accelerations, forces, moments and joint rotations. Pandy & Berme (1988) developed a 

mathematical model to study the single support phase of normal, level, human walking. Their lower 

extremity model was composed by three segments: foot, leg and thigh. Delp et al. (1990) formulated a 

model of the human lower extremity to study how surgical changes in musculoskeletal geometry and 

musculotendon parameters would affect muscle force and joint moments. The group modeled the 

lower extremity as six rigid-body segments: femur, patella, tibia/fibula, talus, foot (comprising the 

calcaneus, navicular, cuboid, cuneiforms and metatarsals) and toes. In this work, the foot is modeled 

with three degrees of freedom from three revolute joints, ankle, subtalar and metatarsophalangeal. 

Anderson & Pandy (1999) developed a three-dimensional model of the human body to simulate a 

maximal vertical jump. The lower extremity of their model was composed by four segments: thigh, leg, 

hind-foot (comprising all the foot bones except the phalanges) and toes. The foot model used in this 

study had the same joints and degrees of freedom as the one described before. Neptune et al. (2000) 

developed a method to simulate single-limb ground contact events, in order to study musculoskeletal 

injuries associated with such movements.  The lower leg model used in their simulations was 

represented by: rear-foot, mid-foot, toes, talus, leg, patella, thigh and pelvis. The foot considered in 

this study had five degrees of freedom: two rotations around the subtalar and talocrural joints; 

flexion/extension in the metatarsophalangeal joint; flexion/extension and internal/external rotation in 

the joint separating the rear-foot and mid-foot.  

In the past decade the pursuit of better human body models continued. Silva (2003) in his PhD 

thesis presented a multibody methodology with fully Cartesian coordinates for the dynamic analysis of 

complex human motions. The lower extremity of the whole body model was composed by three 
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segments: Thigh, Leg and Foot. In this case the foot had three degrees of freedom all due to the ankle 

joint (Flexion/Dorsiflexion, Inversion/Eversion and abduction/Adduction). Moreira (2009) developed a 

three-dimensional computational multibody model to characterize the interaction between the foot and 

ground, simulating the human gait during the stance and swing phases. The model proposed in his 

work is divided in three segments: leg, hind-foot and toes. This model had two degrees of freedom, 

one in the metatarsophalangeal joint and the other in the ankle joint, both represented by a revolute 

joint. P. C. Silva et al. (2010) developed a 2D multibody model of an active Ankle-Foot Orthosis (AFO) 

and integrated it in a whole body multibody model. The human lower extremity model consisted in 

three segments: thigh, leg and foot; the AFO was segmented in two parts: plantar module and lateral 

module. Both the foot and the AFO were assigned with one degree of freedom from the ankle revolute 

joint. Vilà (2012) presented a kinematic and dynamic study of human motion through multibody system 

dynamics techniques. The lower leg models used in this work are composed by four segments: thigh, 

leg, hind-foot and toes. The author connected all the segments through spherical joints in the 3D 

model and by revolute joints in the 2D model. So the foot has six degrees of freedom in the first model 

(three from the ankle joint and three from the metatarsophalangeal joint). And in the second model 

only two, from the same joints. Bruening et al. (2012b) developed a kinetic model based on the 

kinematic model previously described (Bruening et al., 2012a). This model comprehends eight 

degrees of freedom arising from the joints: six from the ankle and midtarsal joint and two from the 

metatarsophalangeal joint. In order to study the kinetics of the model, the segments were converted to 

simple geometric shapes; the model was then subdivided into three sub-models in order to study each 

joint individually.  Despite the number of lower extremity kinetic models existent, few of them report the 

anthropometry information needed to reproduce them. 

 

1.3.3. Inverse Dynamics 

The study of human movement implies the knowledge of the forces and moments of force 

produced by the musculoskeletal system during motion. The measurement of these physical 

parameters can be performed directly, using invasive techniques, in vivo, in human volunteers 

(Henning et al., 1985) or animals (Herzog et al., 1996) and in situ, using cadavers (Livesay et al., 

1995). Alternatively, these measurements can be quantified indirectly, using multibody methodologies, 

which have become a reliable replacement to the techniques presented before. This type of analysis 

can be divided in two main topics, inverse and forward dynamics. In the present work, only inverse 

dynamics methodology was applied, therefore this review approaches only this type of analysis. 

Inverse dynamics consists in the determination of the driving or motor forces and reactions at 

the joints of a multibody system once the movement and the external forces are known (De Jalón & 

Bayo, 1994). From a computational point of view, this approach is far more efficient than forward 

dynamics and should be adopted when the goal of the analysis are exclusively the calculation of the 

joint reaction forces, muscle forces or their equivalent moment of force around the joints (Anderson & 

Pandy, 2001; Silva, 2003). As referred previously, to perform inverse dynamic analysis it is essential 

to know: kinematic information, such as the location of the joints obtained through motion capture 

techniques and markers set protocols; and dynamic information to describe the externally applied 
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forces and inertial properties, generally obtained using force plates (Alkjaer et al., 2001; Gonçalves, 

2010; Silva & Ambrósio, 2002; Winter, 1990). The use of this type of analysis in human motion has 

been growing; examples of that are the works of: Koopman et al. (1995), Alkjaer et al. (2001), Pandy 

(2001), Silva (2003), Blajer et al. (2007) and Gonçalves (2010).  

 

1.4. Main Contributions 

The principal contributions of this work are: 

 A parametric model of a four segments leg and foot complex. This model calculates the 

lengths, masses, inertias and centers of mass positions of the segments that the multibody 

system requires from three single inputs – weight, height and foot size; 

 A new  tridimensional multibody model of the leg and foot complex, using natural coordinates, 

that enables a more realistic and reliable representation of the foot kinematics and dynamics; 

 A new markers protocol that comprehend the joints needed for this model; 

 

1.5. Structure and Organization 

The thesis is divided in six chapters: 

 

Chapter I – Presents the motivation of the author in respect to the theme, the objective that he 

proposes to achieve, a literature review over the main topics approached in the work and a brief 

resume with the main contributions of this work; 

 

Chapter II – Covers the anatomical and physiological aspects the lower extremity limbs, paying 

special attention to the leg and foot. It also presents a study about the osteology, arthrology, myology 

and biomechanics of the leg and foot. A brief overview over gait analysis closes this chapter; 

 

Chapter III – Describes the anthropometric model of the foot, explaining the approaches made to the 

Anderson & Pandy (1999) model and to the measurements taken by Parham et al. (1989); 

 

Chapter IV – Presents a brief description over Multibody Formulation using Cartesian coordinates. 

The leg and foot model description using the methodology described closes this chapter. 

 

Chapter V – Describes the markers set protocol that was used to acquire the kinematic data. 

Approaches the methods used to develop the files that need to be introduced in the analysis software 

Apollo. 

 

Chapter VI – Presents the Kinematic and Kinetic results that validate the model. 

 

Chapter VII – Closes this work by presenting the conclusions and possible future developments. 
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Chapter II 

2. Anatomy, Physiology & Biomechanics 

The human locomotion is a complex synchronous effort made by the interaction between 

bones, muscles, tendons and joints. To study the principles underlying human locomotion, it is 

necessary to first understand the anatomy and physiology of the lower limbs (thigh, leg and foot). 

Each lower limb is composed by thirty bones (excluding the sesamoid bones) and thirty three joints 

(excluding hip joints). Regarding the bones, the thigh comprehends the femur, the leg comprises the 

patella, fibula and tibia and the foot is subdivided in three functional complexes, the tarsus that is 

composed by seven bones (calcaneus, talus, navicular, cuboid and three cuneiforms), the metatarsus 

(five bones) and the phalanges (fourteen bones). On the subject of joints, the leg comprises the knee 

joint and the foot comprehends the other thirty two joints: Talocrural, Talocalcaneo-navicular, 

Calcaneo-cuboid, Talocalcaneal, Cuneo-navicular, Cuboid-navicular, two Intercuneiforms, Cuneo-

cuboid, five Tarsometatarsal, four Intermetatarsal, five Metatarsophalangeal and nine Interphalangeal 

(Gray, 1989; Tortora & Derrickson, 2007). 

The model presented in this work is intended to simulate the foot kinematics and dynamics, to 

do so the inferior limbs were reduced to leg and foot. This chapter presents a brief clinical description 

over the leg and foot complex, paying special attention to the osteology, arthrology, myology, 

physiology and biomechanics of it. 

 

2.1. Osteology 

2.1.1. Tibia 

The Tibia, or shin bone, is located on the medial side of the leg; it is the only weight-bearing 

bone of the leg and the larger one (regarding its size, it’s only surpassed by the femur). It has a 
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prismoid shape expanded in its two extremities. At its proximal end it articulates with the femur and 

fibula and at its distal end with the fibula and talus (Gray, 1989; Tortora & Derrickson, 2007). 

 

2.1.2. Fibula 

The fibula is located on the lateral side of the tibia, with which it is connected above and 

below. It is the smaller of the two bones, and, in proportion to its length, the most slender of all the 

long bones (Gray, 1989). 

 

2.1.3. Foot 

Anatomically the foot can be divided in Tarsus, Metatarsus and Phalanges, depicted in Figure 

2.1. The Tarsus is subdivided in two rows of seven tarsal bones, proximal and distal. The proximal row 

comprises the talus and the calcaneus. The talus is the only bone of the foot that articulates with the 

tibia. The calcaneus projects itself posteriorly to the tibia and fibula and it is the largest and strongest 

bone of the tarsals, it serves to transmit the weight of the body to the ground. The distal row includes 

the cuboid, navicular and the three cuneiform bones, called first, second and third cuneiform.  The 

cuboid bone is found between the calcaneus (proximally) and the basis of the IV and V metatarsals 

(distally). The navicular bone articulates between the head of the talus (proximally) and the cuneiform 

bones (distally). The cuneiform bones (lateral, intermedial and medial) articulate with the navicular 

bone (proximally) and with the basis of the first three metatarsals. Each bone of the tarsus is arbitrarily 

considered as cuboid in shape with six faces (Gray, 1989; Tortora & Derrickson, 2007). 

The Metatarsus comprehends five long and thin metatarsal bones, numbered from I to V, they 

connect the tarsus to the phalanges. These bone are characterized by their prismatic section shape 

and can be divided into three areas, head, body and basis. The first metatarsal is shorter and thicker 

than the others, its basis articulates with the medial cuneiform bone and laterally with the second 

metatarsal. The second metatarsal is longer than the rest, its basis has four articular surfaces: one 

proximal, with the intermedial cuneiform bone; one dorsomedial, with the medial cuneiform bone; two 

lateral, one anterior, with the third metatarsal and one posterior, with the third cuneiform and 

sometimes a fifth facet is present and articulates with the first metatarsal. The basis of the third 

metatarsal has three articular surfaces: proximally with the lateral cuneiform bone; medially with the 

second metatarsal and laterally with the fourth metatarsal. The fourth metatarsal is shorter than the 

third, and its basis articulates proximally with cuboid bone, medially with the third metatarsal and the 

cuneiform bone and laterally with the fifth metatarsal. Finally the basis of the fifth metatarsal has an 

articulated surface in its proximal side with the fourth metatarsal and the cuboid bone. It is also 

characterized by a tuberosity in its lateral side. The heads of the metatarsals are articulated with the 

respective phalanges (Gray, 1989; Tortora & Derrickson, 2007). 

The Phalanges are subdivided in proximal, medial and distal except for the hallux (big toe) that 

only has two, proximal and distal (Gray, 1989; Tortora & Derrickson, 2007). Another common foot 

division used in the literature relates to the foot functionality, where the subdivisions are rear-foot 

(calcaneus and talus), mid-foot (cuboid, navicular and cuneiforms), fore-foot (metatarsus) and toes 

(phalanges) (Abboud, 2002; Leardini et al., 2007). 
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2.2. Arthrology 

2.2.1. Knee joint 

The knee joint must be regarded as consisting of three types of joints in one: two condyloid 

joints, between each condyle of the femur and the corresponding meniscus and condyle of the tibia; 

and a third, a saddle joint between the patella and the femur. The bones are connected together by 

the following ligaments: The articular capsule; The Ligamentum Patellae; The Oblique Popliteal; The 

Tibial Collateral; The Fibular Collateral; The Anterior Cruciate; The Posterior Cruciate; The Medial and 

Lateral Menisci; The Transverse; The Coronary. 

The movements which take place at the knee-joint are flexion and extension, and, in certain 

positions of the joint, internal and external rotation (adduction and abduction). The movements of 

flexion and extension at this joint are different from those in a typical hinge-joint by two main reasons: 

the axis around which motion takes place is not a fixed one, but shifts forward during extension and 

backward during flexion; the beginning of flexion and the end of extension are accompanied by 

rotatory movements associated with the fixation of the limb in a position of great stability (Pina, 1999; 

Gray, 1989). 

 

2.2.2. Talocrural joint 

The talocrural joint is a hinge joint, approximately uniaxial; its line can be estimated by the 

anterior margin of the distal extremity of the tibia, which is palpable when the overlying tendons are 

relaxed. Despite being uniaxial, the rotation angle is dynamic, changing during dorsiflexion and plantar 

flexion. This joint is found on the mortise for the reception of the upper convex surface of the talus, 

formed by the inferior extremity of the tibia, the medial malleolus and the lateral malleolus, as 

represented in Figure 2.1. The bones are connected by a fibrous capsule, and by the following 

ligaments: the medial deltoid; the anterior and posterior talofibular; calcaneo-fibular. 

When the foot is perpendicular to the leg, the active movements are the dorsiflexion and 

plantar flexion. During plantar flexion some small gliding, rotation, adduction and abduction 

movements are allowed (Pina, 1999; Gray, 1989). 
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Figure 2.1 - Foot bones and joints. (Up) Top View. (Middle) Medial View. (Down) Lateral View. 

 

2.2.3. Intertarsal joints 

2.2.3.1. Talocalcaneo-navicular joint  

The talocalcaneo-navicular joint is a spherical joint. It is formed by the rounded head of the 

talus being received into the concavity formed by the posterior surface of the navicular, the anterior 

articular surface of the calcaneus, and the upper surface of the planter calcaneonavicular ligament, as 

depicted in Figure 2.1. There are two ligaments in this joint, the articular capsule and the dorsal 

talonavicular. 

The active movements are the inversion end eversion of the foot (Pina, 1999; Gray, 1989). 
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2.2.3.2. Calcaneo-cuboid joint 

The calcaneo-cuboid is a biaxial saddle joint formed between the calcaneus and the cuboid, 

as represented in Figure 2.1. There are five intervenient ligaments in this joint: the articular capsule; 

the dorsal calcaneocuboid; part of the bifurcated; the long plantar; the plantar calcaneocuboid. 

The movements between the calcaneus and the cuboid are slight gliding movements of the 

bones upon each other. There is also some rotation of one over the other during inversion and 

eversion of the whole foot (Pina, 1999; Gray, 1989; Tortora & Derrickson, 2007). 

The Talocalcaneo-navicular joint and the Calcaneo-cuboid joint together form the Midtarsal 

joint or Transverse tarsal joint or Chopart’s joint (Pina, 1999; Hicks, 1953). 

 

2.2.3.3. Subtalar or Talocalcaneal joint 

The subtalar joint is a rudimental condyloid joint. It is formed between the posterior calcaneal 

facet on the inferior surface of the talus, and the posterior facet on the superior surface of the 

calcaneus, as depicted in Figure 2.1. The two bones are connected by an articular capsule and by 

anterior, posterior, lateral, medial, and interosseous talocalcaneal ligaments. 

The movements between the talus and the calcaneous follow the ones described in the 

talocalcaneo-navicular joint (Pina, 1999; Gray, 1989). 

 

2.2.3.4. Cuneo-navicular, Cuboid-navicular, Intercuneiform and Cuneo-cuboid joints 

These are all arthrodial joints and they are formed between the bones that they enunciate, as 

represented in Figure 2.1. The cuneo-navicular joint is connected by dorsal and plantar ligaments. The 

cuboid-navicular, intercuneiform and cuneo-cuboid are coupled by dorsal, plantar and interosseous 

ligaments. 

The movements that these joints allow are slight gliding movements and rotation during 

pronation and supination (Pina, 1999; Gray, 1989; Tortora & Derrickson, 2007). 

 

2.2.4. Tarsometatarsal joints 

The tarsometatarsal joints are arthrodial joints. The first metatarsal articulates with the medial 

cuneiform bone; the second is deeply wedged in between the first and third cuneiforms articulating by 

its base with the second cuneiform; the third articulates with the third cuneiform; the fourth, with the 

cuboid and third cuneiform; and the fifth, with the cuboid, as depicted in Figure 2.1. The bones are 

connected by dorsal, plantar and interosseous ligaments. 

The movements allowed in these joints are reduced to slight gliding upon each other (Pina, 

1999; Gray, 1989). 

 

The tarsometatarsal joint is also called Lisfranc joint (DiDomenico & Cross, 2012; Pina, 1999). 
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2.2.5. Intermetatarsal joints 

The intermetatarsal joints are arthrodial joints, Figure 2.1. The bases of the metatarsals are 

connected by the dorsal, plantar, and interosseous ligaments, except for the first metatarsal, which is 

not connected by any ligaments with the second metatarsal. 

The movements allowed in these joints are reduced to slight gliding upon each other (Pina, 

1999; Gray, 1989). 

 

2.2.6. Metatarsophalangeal joints 

The metatarsophalangeal joints are condyloid joints. They are formed by the reception of the 

rounded heads of the metatarsal bones in shallow cavities on the ends of the first phalanges, as 

represented in Figure 2.1. The ligaments that involve these joints are plantar and two collateral. 

The movements permitted in the metatarsophalangeal joints are dorsiflexion, plantar flexion, 

abduction, and adduction (Pina, 1999; Gray, 1989). 

 

2.2.7. Interphalangeal joints 

The interphalangeal joints are hinge joints, Figure 2.1. There are three ligaments in these 

joints: a plantar and two collateral. 

The only movements permitted in the joints of the digits are dorsiflexion and plantar flexion 

(Pina, 1999; Gray, 1989). 

 

2.3. Myology 

Muscles that provide movement to the foot bones can be differentiated in extrinsic, arising 

from the leg, and intrinsic, originating in the foot itself. The extrinsic muscles are divided into three 

compartments by deep fascia: anterior compartment; lateral compartment; posterior compartment. A 

brief overview over these muscles is presented in Table 2.1 and Table 2.2. 
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Table 2.1 - Description of the extrinsic muscles intervenient in the foot movement (Pina, 

1999; Gray, 1989; Tortora & Derrickson, 2007) 

Extrinsic Muscles 

Muscle Origin Insertion Function 

Anterior Compartment 

Extensor digitorum 

longus 

Tibia and 

Fibula 

Middle and distal 

phalanges of the four outer 

toes 

 

Dorsiflexes, abducts and everts foot; 

plantarflexes the four lateral toes  

Extensor hallucis 

longus 

Fibula Distal Phalange of the 

hallux 

 

Plantarflexes hallux, dorsiflexes and 

inverts foot 

 

Tibialis anterior Tibia First metatarsal and first 

cuneiform 

 

Dorsiflexes, adduces and inverts 

foot 

Fibularis tertitus Fibula Fifth metatarsal Dorsiflexes, abducts and everts foot 

Lateral Compartment 

Fibularis brevis Fibula Fifth metatarsal 

 

Everts and abducts foot 

 

Fibularis longus Fibula First metatarsal Everts, abducts and plantarflexes 

foot 

Posterior Compartment 

Gastrocnemius Femur Calcaneus by means of 

calcaneal (Achilles) tendon 

 

Plantarflexes foot, adduces and 

inverts foot 

Plantaris Femur Calcaneus by means of 

calcaneal (Achilles) tendon 

 

Assists Gastrocnemius 

Soleus Tibia and 

Fibula 

Calcaneus by means of 

calcaneal (Achilles) tendon 

 

Plantarflexes foot, adduces and 

inverts foot 

Flexor digitorum 

longus 

Tibia Distal phalanges of the four 

lateral toes 

 

Dorsiflexes four lateral toes and 

plantarflexes foot 

Flexor hallucis 

longus 

Fibula Distal phalange of hallux 

 

Dorsiflexes hallux and plantarflexes 

foot 

 

Popliteus Femur Posterior tibia Dorsiflexes and medially rotates leg 

 

Tibialis posterior Tibia and 

Fibula 

Navicular; The three 

cuneiforms; Cuboid; 

Metatarsals (2-4) 

Adduces and inverts foot 
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Table 2.2 - Description of the intrinsic muscles intervenient in the foot movement (Pina, 

1999; Gray, 1989; Tortora & Derrickson, 2007) 

Intrinsic Muscles 

Muscle Origin Insertion Function 

Abductor digiti 

minimi 

Calcaneus Proximal phalange of fifth toe 

 

Abducts and dorsiflexes 

fifth toe 

 

Abductor 

hallucis 

Cuboid, Lateral Cuneiform, 

second and third 

metatarsals, three last 

metatarsophalageal joints 

 

Fused with Flexor hallucis 

brevis and Flexor hallucis 

longus 

Abducts and dorsiflexes 

hallux 

Adductor 

hallucis 

 

Calcaneus 

 

Proximal phalange of hallux 

 

Adduces and 

dorsiflexes hallux 

Extensor 

digitorum brevis 

Calcaneus Proximal phalange of the 

hallux and three tendons fused 

with Extensor digitorum longus 

 

Plantarflexes the 

proximal phalanges of 

the four lateral toes 

Flexor digiti 

minimi brevis 

 

Fifth metatarsal Proximal phalange of fifth toe 

 

Dorsiflexes the proximal 

phalange of the fifth toe 

Flexor digitorum 

brevis 

Calcaneus Medial phalanges of second to 

fifth toe 

 

Dorsilexes the lateral 

four toes 

 

Flexor hallucis 

brevis 

Cuboid and Lateral 

Cuneiform 

 

Proximal phalange of the 

hallux and lateral sesamoid 

 

Dorsiflexes hallux 

Dorsal interossei Metatarsals (3-5) Proximal phalanges (3-5) 

 

Dorsiflexes the proximal 

phalanges (3-5) 

 

Plantar 

interossei 

 

Metatarsals Proximal phalanges (2-4) 

 

Dorsiflexes the proximal 

phalanges (2-4) 

 

Lumbricales Flexor digitorum 

longus 

Extensor tendons of the four 

lateral toes 

 

Dorsiflexes the proximal 

phalanges and 

plantarflexes the medial 

and distal phalanges 

 

Quadratus 

plantae 

Calcaneus Tendons of Flexor digitorum 

longus 

Assists Flexor digitorum 

longus 
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2.4. Arches of the Foot 

Usually the human foot is not a flat surface; on the contrary it has an arched aspect. This is 

due to a series of bony longitudinal and transverse arches, maintained by ligaments, tendons and 

muscles that provide the combined strength, flexibility and movement necessary for normal function, 

Figure 2.2. The longitudinal arch is generally described by two main arches: the medial and the lateral 

arch. The medial arch comprises the calcaneus, talus, navicular, the three cuneiforms and their three 

metatarsals. The supports of this arch are the tuberosity of the calcaneus and the heads of the three 

metatarsal bones. This arch is taller, more mobile and more flexible than the lateral arch. The lateral 

arch consists of the calcaneus, the cuboid and the lateral two metatarsal bones. Both arches are 

relatively rigid in standing but become more compliant during walking. The importance of the anatomic 

structures that support them differs; while muscles are indispensable to the maintenance of the medial 

arch, ligaments are a relatively more important part in the lateral arch. A series of transverse arches 

exist at the posterior part of the metatarsus, at the anterior part of the tarsus and in the middle of the 

tarsus, forming a convex curve in the direction of the dorsum when looking at the plantar surface of a 

non-weight bearing foot. This series of transverse arches disappear and flatten to varying degrees, 

during weight bearing (Abboud, 2002; Gray, 1989). 

 

Figure 2.2 - Foot arches representation. 

 

2.5. Physiology and Biomechanics 

The foot, as seen before, is a complex multi-articular mechanical structure consisting of 

bones, joints and soft tissues, playing an extremely important role in the biomechanical function of the 

lower extremity and is controlled by both intrinsic and extrinsic muscles. It has to both support body 

weight whilst standing and to act as a lever to propel the body during locomotion. It must be able to 

conform to even and uneven surfaces, and thus be capable of making good contact with almost any 

supporting surface, forming a rigid platform that will not collapse under body weight. 

Joints of the foot are controlled by extrinsic and intrinsic muscles of the lower limb and provide 

for the major motion function, angulation and support of the foot. As with all joints, motion occurs by 

rotation about an axis in a plane of motion. The three planes of motion in the foot are defined as: 

sagittal plane, frontal plane and transverse plane. The basic foot movements are described as follows: 
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Adduction occurs when the distal aspect of the foot is angulated towards the midline of the 

body in the transverse plane and deviated from the sagittal plane. Abduction occurs when the distal 

aspect of the foot is angulated away from the midline. These movements are depicted in Figure 2.3. 

Plantar flexion is verified when the distal aspect is angulated downwards in the sagittal plane 

away from the tibia. Dorsiflexion is verified when the distal aspect is angulated towards the leg in the 

sagittal plane. These movements are represented in Figure 2.3. 

 

Figure 2.3 - Basic foot movements. (Left) Adduction/Abduction. (Right) Plantarflexion/Dorsiflexion (Abboud, 

2002). 

Inversion occurs when it is tilted in the frontal plane, such that its plantar surface faces 

towards the midline of the body and away from the transverse plane. Eversion occurs when its plantar 

surface faces away from the midline of the body and away from the transverse plane. These 

movements are depicted in Figure 2.4. 

Supination is verified when it is simultaneously adducted, inverted and plantar flexed. 

Pronation is verified when it is abducted, everted and dorsiflexed (Abboud, 2002). These movements 

are represented in Figure 2.4. 

 

Figure 2.4 - Basic foot movements. (Left) Inversion/Eversion. (Right) Supination/Pronation (Abboud, 2002). 
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2.6. Human Gait Analysis 

A succinct overview over normal human gait analysis is intended in this section in order to 

introduce the application case discussed on Chapter 5. Walking is the natural set of movements for 

human locomotion in a horizontal distance. Normally we learned it around the first year of age and it 

becomes part of our daily life, without even thinking about it. To define this set of movements it’s 

trickier than to perform them. Lakany (2008) describes normal walking as a method of locomotion 

involving the use of two legs, alternately, to provide both support and propulsion. Whittle (2001) makes 

the distinction between walking, a periodic process, and gait, the manner or style of walking rather 

than the walking itself. The gait cycle can be defined as the time interval between two successive 

occurrences of one of the repetitive events of walking. Gait can be divided into two main temporal 

periods, Stance phase and Swing phase.  

Stance phase is the time period in which a determined foot is in contact with ground and it can 

be described as five sub-phases as depicted in Figure 2.5:  

1. Initial Contact (IC) or Heel Strike (HS) refers to the instant in which the foot of the 

leading lower limb touches the ground. Normally this initial contact is made by the heel; 

2. Loading Response (LR) or Foot Flat (FF) occurs immediately after initial contact. 

During loading response, the foot comes in full contact with the floor, and body weight is 

fully transferred onto the stance limb. It represents 10% of gait cycle. The term foot flat is 

the point in time when the foot becomes approximately planar; 

3. Midstance (MS) represents the beginning of single support. It begins when the 

contralateral foot leaves the ground and continues as the time at which the swing–period 

foot passes the stance-period foot. Midstance occurs from the 10 to 30 % of gait cycle; 

4. Terminal Stance (TS) begins when the heel lifts the ground (heel off) and ends when the 

contralateral foot contacts the ground, supporting the body weight. This phase occurs 

between 30 and 50% of the gait cycle; 

5. Preswing (PS) or Toe Off (TO) begins when the contralateral foot contacts the ground 

and ends when terminal contact is made with the toe of stance limb (toe off). 

Swing phase represents the period of time, in which the foot is not in contact with the ground 

and can be divided in three sub-phases as depicted in Figure 2.5: 

1. Initial Swing (IS), from 60 to 75% of gait cycle, begins at the moment the foot leaves the 

ground and continues until maximum knee flexion occurs; 

2. Midswing (MiS) begins following maximum knee flexion and ends when the leg is in a 

vertical position, from 75 to 85%. Midswing corresponds to midstance of contra lateral 

foot, being the time at which the two feet are side by side; 

3. Terminal Swing (TSw) is the final phase of terminal swing. It is the deceleration phase, 

were the leg passes beyond perpendicular, and the knee fully extends in preparation for 

heel contact (Lakany, 2008; Moreira, 2009; Winter, 1991). 
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Figure 2.5 - Gait Cycle. 
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Chapter III 

3. Model Anthropometry 

Anthropometry is the science that studies the measurements of the human body. During 

history anthropometry was used to study the evolution of the human being, what differentiate us from 

our ancestors, what were the differences between genders, ages, races, and so on. With the evolution 

of technology, anthropometry regained attention; it became extremely important that the equipment 

and facilities that we use every day are adjustable to the individual (Winter, 1990). 

 

3.1. Model Description 

The main objective of this work was the development of a leg and foot model, which presents 

simultaneously robustness and efficiency, enabling the study of the main kinematic and dynamic 

patterns during human motion, in particular human gait.  Since one of the objectives of the model is its 

application in academic and clinical studies, the developed model should consider several of the 

aspects previously addressed. The model should be detailed to study the major kinematic and kinetic 

parameters during the motion, enabling also the perception of possible deviations that happen at the 

ankle-foot level, taking in account the complexity of the required acquisition protocol.  

In order to maximize the resemblance of the model to real human motion, the proposed model 

divides the leg in four segments, composed osteologically by: 

1. Leg: Tibia and fibula; 

2. Rear-foot: Calcaneus; 

3. Mid/fore-foot: Navicular, cuboid, the three cuneiform bones and metatarsus; 

4. Toes: Phalanges. 

The segments are brought together by a set of joints; in total the model has four: 
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1. Talocrural joint; 

2. Talocalcaneal or subtalar joint; 

3. Midtarsal or Chopart’s joint; 

4. Metatarsophalangeal joint; 

The choice of the four segments emerged from literature review (Hicks, 1953) and from the 

experience obtained from the laboratory practice. The intrinsic foot motions were acquired for different 

daily movements such as walking, jumping, climbing stairs and pure movements (plantar flexion and 

dorsiflexion, eversion and inversion), using an optical motion capture system. This set of trials enabled 

to conclude that the insertion of a third rigid body between the toes segment and the rear foot would 

increase the reliability of the model, since its inclusion would enable the study of movements that 

happen at the midtarsal and tarsometatarsal joint. This data indicates that the motion of the 

metatarsals due to movements at both of these joints should not be neglected, being visually detected 

if a force is applied in the metatarsal region. It is important to note that the midtarsal and 

tarsometatarsal joints are responsible for different movements. However, in order to avoid the 

increase of computational effort during the simulations and the time spent during the preparation of the 

required acquisition protocol, the model will consider that the different DOF’s of each joint are 

concentrated at the midtarsal joint. A universal joint will be used to study sagittal and horizontal 

movements, and a coincident second rigid body to study the rotation of the mid/fore-foot segment 

around itself. This approach, of using a coincident rigid body, is also used to study the internal rotation 

of the leg. This consideration is further explained in Section 4.5. 

Another important aspect of the model is the non-intersecting axes of the Talocrural and the 

Talocalcaneal joint, referred by  Isman & Inman (1969). This is achieved by considering the talus as a 

massless link, avoiding the problem pointed out by Anderson & Pandy (1999) that the addition of the 

talus, due to its small mass, would increase the integration time for the model considerably, this 

consideration is depicted in Figure 3.1. This solution solves the kinematic problem without the 

introduction of a dynamic problem. This consideration is further explained in Section 4.5. 

  

Figure 3.1 - (Left) Foot bones with the Talus highlighted. (Right) Massless Link representation with the Talocrural 

and Talocalcaneal axis depicted. 

 In total the model has thirteen degrees of freedom (DOF), they arise from: 

 1 DOF – Flexion (plantar/dorsiflexion) at the Metatarsophalangeal joint; 

 2 DOF – Flexion (plantar/dorsiflexion) and Abduction/Adduction at the Midtarsal joint; 

 1 DOF – Internal mid-foot and fore-foot rotation; 
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 1 DOF – Flexion (plantar/dorsiflexion) at the talocrural joint; 

 1 DOF – Inversion/Eversion at the talocalcaneal joint; 

 1 DOF – Internal leg rotation; 

 6 DOF – Rotations and Translations over the three axes of the model as a whole. 

The model DOF’s are depicted in Figure 3.2. 

 

Figure 3.2 - Representation of the system Degrees of Freedom. (Red) Rotation and Translation Axis. 

 

3.2. Leg and Foot Anthropometry 

 The study of human locomotion requires the use of kinetic and kinematic analysis, which in 

turn involve the use of anthropometric measures such as: segments dimensions, masses, moments of 

inertia, the location of the centers of mass, joints centers of rotation, the origin and insertion of 

muscles, the angle of pull of tendons, and the length and cross-sectional of muscles. (Winter, 1990) 

  In order to build a foot model to study the foot-ground interaction it is fundamental to study the 

anthropometry of this body segments. 

 

3.2.1. Segment dimensions 

 In Section 1.3 it was seen that the majority of the anthropometric studies consider the foot as a 

unique segment. However, an extensive study was performed by the US Army Natick Research, 

Development and Engineering Center in 1985 in Fort Jackson, South Carolina, in order to access 

various aspects of fit of a new boot (i.e. the MIL-5) (Parham et al., 1989). This study had the 

particularity to involve 293 males and 574 females, providing a good statistical distribution. The 

measurements taken are described in Table 3.1 and Figure 3.3. 
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Table 3.1 - Description of the measurements taken by Parham et al. (1989). 

 

 

Figure 3.3 - Representation of the measurements taken by Parham et al. (1989). 

 For the present model, the important measurements presented in this document are the mean 

of the: Stature (1), Medial Malleolus Height (4), Lateral Malleolus Height (5), Ankle Length (22), Ball of 

Foot Length (24) and Foot Length (25).  They are summarized in Table 3.2. 

Table 3.2 - Measurements taken into consideration in the present work (Parham et al., 
1989). 

 Mean Male (cm) Mean Female (cm) 

Stature (1) ( bPH )  175.71 161.85 

Medial Malleolus Height (4) 8.12 7.17 

Lateral Malleolus Height (5) 7.26 6.59 

Ankle Length (22) 10.84 9.65 

Ball of Foot Length (24) 19.67 17.75 

Foot Length (25) (
fP
L ) 26.96 24.38 

 

 It is necessary to adapt this information to the anthropometric measurements of the model. 

This is done considering that: 

 Rear-foot height – Average between the Medial Malleolus height (4) and the Lateral 

Malleolus height (5); 

Measurements taken by Parham et al. (1989) 

1 Stature 10 Maximum Toe Height 22 Ankle Length 

2 Calf Height 11 Outside Ball of Foot Height 23 Instep Length 

3 Ankle  Height 12 Calf Circumference 24 Ball of Foot Length, Right 

4 Medial Malleolus Height 13 Ankle Circumference 25 Foot Length, Right 

5 Lateral Malleolus Height 14 Heel-Ankle Circumference 26 Ball of Foot Breadth, Right 

6 Dorsal Arch Height 15 Instep Circumference 27 Outside Ball of Foot Length 

7 Plantar Arch Height 16 Ball of Foot Circumference 28 5th Toe Length 

8 Ball of Foot Height 17 Heel Breadth, Right 32 Bimalleolar Breadth 

9 First Toe Height 18 Ball of Foot Breadth, Diagonal 33 1st-3rd Toe Breadth 
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 Rear-foot length – Equal to Ankle length (22); 

 Mid-foot and Fore-foot length – Subtraction  of  Ankle length (22) to Ball of Foot length 

(24); 

 Toes – Subtraction of  Ball of Foot length (24) to Foot length (25); 

The previous calculations are summarized in Table 3.3. 

Table 3.3 - Adaptation of the measurements taken by  Parham et al. (1989) to the present 
work. 

 Mean Male (cm) Mean Female (cm) 

Rear-foot height ( hL ) 7.69 6.88 

Rear-foot length (
RF
L ) 10.84 9.65 

Mid-foot and Fore-foot length (
Mf
L ) 8.83 8.1 

Toes (
T
L ) 7.29 6.63 

 Drillis & Contini (1966)  were pioneers by presenting the segments’ length as a percentage of 

body height; this procedure serve as a good approximation in the absence of individual direct 

measures (Winter, 1990). In the present work a similar idea will be applied, the segments’ length will 

be presented as a percentage of the foot length (
fP
L , Male 26.96 cm, Female 24.38 cm) (Parham et al., 

1989). This approach instead of the one applied by Drillis & Contini (1966) is related with the fact that 

the size of the foot does not  have a direct relation with the body height. Table 3.4 is the application of 

this approach to the data in Table 3.3. 

Table 3.4 - Summary of the measurements presented in Table 3.3 as a percentage of the 
foot length. 

 Formula Mean Male  Mean Female 

Rear-foot height / 100h fPL L   28.52 28.22 

Rear-foot length / 100Rf fPL L   40.21 39.58 

Mid-foot and Fore-foot length / 100Mf fPL L   32.75 33.22 

Toes length / 100T fPL L   27.04 27.20 

 

3.2.2. Segments Mass and Center of Mass 

 Information regarding a three segment foot model is sparse or non-existent, so in order to 

construct one, the two segment foot described by Anderson & Pandy (1999) served as the basis for 

this work. A summary of the information taken from this document is presented in: Table 3.5 regarding 

the centers of mass positions, Table 3.6 concerning the masses, and Figure 3.4 depicts the model 

used by these authors. 
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Table 3.5 – Summary of the relevant information (Right Leg and Foot) for the model, 

regarding the centers of mass presented by Anderson & Pandy (1999). Each body 

articulates with an Inboard Body by a joint of a particular type. The position of a joint relative 

to the center of mass of the body is defined by the Body-To-Joint vector. The position of the 

joint relative to the Inboard Body’s center of mass is given by the Inboard-To-Joint vector. 

 Vector Body 
Inboard 

Body 

CM 

x (m) 

CM 

y (m) 

CM 

z (m) 

Inboard-To-

Joint 

1AP
v   Hind-foot Leg 0.0000 -0.2438 0.0000 

2AP
v   

 

Toes 

 

Foot 

 

0.0980 

 

-0.0380 

 

0.0180 

 

 

Body-To-Joint 

3AP
v   Hind-foot Leg -0.0359 0.0513 -0.0055 

4AP
v   Toes Foot -0.0269 -0.0185 -0.0051 

5AP
v  Leg Thigh 0.0000 0.1862 0.0000 

 

Table 3.6 - Summary of the relevant information (Right Leg and Foot) for the model, 
regarding the masses presented by Anderson & Pandy (1999). 

 Mass (kg) 

Leg (
L
m ) 3.510 

Hind-foot (
H
m ) 1.20 

Toes (
T
m ) 0.2051 

 

 

Figure 3.4 - Locations of the talocrural, talocalcaneal and metatarsophalangeal joint axes for the right foot in the 

model used by Anderson & Pandy (1999). 
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In this document, Anderson & Pandy (1999) calculated the hind-foot and toes mass, position 

of the centers of mass and the moments of inertia by representing the volume of each segment by a 

set of interconnected vertices, in which the coordinates were derived by measuring the surface of a 

size 10 shoe. They assumed a uniform density of 1.1gm/cm3 for the feet, the density was numerically 

integrated over the volume of each segment.  The combined mass of these two segments is similar to 

the one reported by (Mcconville & Churchill, 1981) plus the mass of a 10 size shoe. 

Following the approach presented on the previous section, the positions of the centers of 

mass relative to the joints and to the inboard body (body that articulates with the body being studied) 

were generalized, meaning that they were converted to percentages relative to the foot size (
fAP
L ), i.e. 

the lengths of the segments were divided by the total length of the foot (27cm, 10 size shoe); except 

for the hind-foot position relative to the inboard body (leg) and the leg center of mass relative to the 

knee joint, that were converted to a percentage relative to the body height (
bAP
H , 177cm). The mass 

of each segment was also converted to percentages relative to the body total mass (
b
m , 71.0052 kg). 

The weight of the body, its height and the foot size are described in Anderson & Pandy (1999). 

Another important modification was made on the axes; representing the local reference frames 

of each foot segment in order to make these compatible with the experimental set up and with the 

multibody software adopted. The x axis was aligned with the medial foot line and the y axis became z. 

The novel y axis is perpendicular to the novel x and z axis, so the coordinates in y of the centers of 

mass become null (Table 3.4). The final alteration was made regarding the direction of the vectors 

Body-To-Joint described on Table 3.5. Anderson & Pandy (1999) presented them from the center of 

mass to the joint, in this work they will be presented from the joint to the center of mass, as matter of 

visual simplicity. The summary of this information is presented in Table 3.7, Table 3.8, Table 3.9 and 

Figure 3.5. 

Table 3.7 - Masses of the segments described by Anderson & Pandy (1999) converted to 

percentages relative to the total body mass (
b
m ). 

 Formula Masses 

Leg 100L

b

m

m
  4.943 

Hind-foot 100H

b

m

m
  1.690 

Toes 100T

b

m

m
  0.289 

Foot (Toes + Hind-foot) 100H T

b

m m

m
  1.979 
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Table 3.8 - Position of the Centers of Mass relative to the Joints (
APiv
x  ,

APiv
y ,

APiv
z ) of 

the segments described by  Anderson & Pandy (1999) converted to percentages relative to 

the foot length (
fAP
L - Hind-foot CM and Toes CM) or body height (

bAP
H - Leg CM) and 

converted to the new axes. 

Centers of Mass relative to the Joints 

Hind-foot CM 

(Relative to the Ankle Joint) 

Toes CM 

(Relative to the 

Metatarsophalangeal Joint) 

Leg CM 

(Relative to the Knee Joint) 

Formula Value Formula Value Formula Value 

3 100APv

fAP

x
x

L
  13.30 

4 100APv

fAP

x
x

L
  9.96 5 100APv

bAP

x
x

H
  0 

y  0 y  0 y  0 

3 100APv

fAP

z
z

L
  -19.00 4 100APv

fAP

y
z

L
  6.85 5 100APv

bAP

y
z

H
  -10.52 

Table 3.9 - Position of the Joints relative to the Inboard bodies Centers of Mass (
APiv
x  ,

APiv
y ,

APiv
z )  of the segments described by Anderson & Pandy (1999) converted to 

percentages relative to the foot length length (
fAP
L - Metatarsophalangeal Joint) or body 

height (
bAP
H - Ankle Joint) and converted to the new axes. 

Joints relative to the Inboard Bodies Centers of Mass 

Ankle Joint 

(Relative to the Leg CM) 

Metatarsophalangeal Joint 

(Relative to the Hind-foot CM) 

Formula Value Formula Value 

1 100APv

bAP

x
x

H
 0 

2 100APv

fAP

x
x

L
 36.30 

y  0 y  0 

1 100APv

bAP

y
z

H
 -13.77 

2 100APv

fAP

y
z

L
 -14.074 
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Figure 3.5 - Locations of the talocrural, talocalcaneal and metatarsophalangeal joint axes for the right foot in the 

modified model based on the one formulated by Anderson & Pandy (1999). 

From the initial two segments foot, it was necessary to convert it into three segments; this was 

achieved by splitting the hind-foot (Segment 0) into rear-foot (Segment III) and mid-foot and fore-foot 

(Segment II). The segment corresponding to the toes (Segment I) was kept unchanged therefore 

equal to the one in the original model. A new joint was added between segment III and II, so this new 

arrangement has four joints: Knee joint (J4), Talocrural joint (J3), Midtarsal joint (J2) and 

Metatarsophalangeal joint (J1), as depicted in Figure 3.6. To calculate the anthropometric data for the 

proposed model some assumptions had to be made due to the lack of information available in articles 

or experimental data. 

 The segment II center of mass (CM2) position relative to Joint 2 (r2 vector - Figure 3.6 

and Table 3.12). It was assumed that CM2 position correspond to the middle point 

between J2 and J1; 

 The mass percentages of segment III and II relative to segment 0 (m3 and m2). It was 

assumed that the mass of segment II is equivalent to 40% of the mass of segment 0 and 

the mass of segment III is therefore 60% of the mass of segment 0; 

 The Inertia of segment III. This assumption is explained in Section 3.2.3. 

These assumptions were formulated so that the model presented in this work was, from the 

anthropometric and inertial point of view, equivalent to the one presented by Anderson & Pandy 

(1999) when both are in the same initial reference position. It is important to notice that these 

assumed data is easily modified in order to adjust the model. The final scheme is presented in Figure 

3.6. 
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Figure 3.6 – Anthropometric final scheme with the representation of the four segments, the corresponding centers 

of mass and important anthropometric vectors (Table 3.12 and Table 3.13) – Right Foot 

In order to complement the information presented in Section 3.2.1, the segments lengths 

assigned to the proposed model (
0
L ,

I
L ,

II
L ,

III
L ,

IV
L and 

III
h ) are reported in Table 3.10; based on the 

work of Parham et al. (1989) (Table 3.4), except for the length of the shank (LIV) that is the sum of the 

length between the knee joint (J4) and the leg center of mass (CM4) with the length between the leg 

center of mass (CM4) and the talocrural joint (J3), presented by Anderson & Pandy (1999) (Table 3.5). 

Table 3.10 - Segments Length. 

 

 

 Formula Value 

Segment 0 (
0
L ) 100Mf Rf

fP

L L

L
 73 

Segment I (
I
L ) 100T

fP

L

L
 27 

Segment II (
II
L ) 100Mf

fP

L

L
 33 

Segment III (
III
L ) 100Rf

fP

L

L
 40 

Segment IV (
IV
L ) 1 5 100AP APv v

bAP

y y

H
 24 

Height  

segment III (
III
h ) 

100h

fP

L

L
 28 
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The masses designated to each segment in the proposed model (
0
m ,

I
m ,

II
m ,

III
m ,

IV
m ), after 

applying the assumptions over the information in Table 3.7, are reported in Table 3.11. 

Table 3.11 – Segments Mass. 

 Formula Value 

Segment 0  

(
0
m ) 

100H

b

m

m
 1.690 

Segment I 

(
I
m ) 

100T

b

m

m
 0.289 

Segment II 

(
II
m ) 0

40%m  0.676 

Segment III 

(
III
m ) 0

60%m  1.014 

Segment IV 

(
IV
m ) 

100S

b

m

m
 4.943 

Using the segments dimensions presented in Table 3.10 and the vectors parameters reported in Table 

3.8 and Table 3.9, allows the computation of the anthropometric vectors that define the proposed 

model (depicted in Figure 3.6). These vectors are presented in Table 3.12 and Table 3.13, the 

description of the calculations is detailed following the tables. 

Table 3.12 – Anthropometric foot vectors description. 

Vectors (Foot) 

 Initial Point Final Point 100i

f

x

L
  100i

f

y

L
 100i

f

z

L
  

r0 Joint 3 CM0 13.30 0.00 -19.00 

r3 Joint 3 CM3 1.20 0.00 -14.31 

r0J2 CM0 Joint 2 3.30 0.00 0.00 

r2 Joint 2 CM2 14.85 0.00 -7.04 

r1 Joint 1 CM1 9.96 0.00 6.85 

r3J2 CM3 Joint 2 15.40 0.00 -4.69 

rJ32 Joint 3 Joint 2 16.59 0.00 -19.00 

rJ3C2 Joint 3 CM2 31.44 0.00 -26.04 

r30 CM3 CM0 12.10 0.00 -4.69 

r02 CM0 CM2 18.15 0.00 -7.04 

r0J1 CM0 Joint 1 36.3 0.00 -14.07 
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Table 3.13 – Anthropometric leg vectors description. 

Vectors (Leg) 

 Initial Point Final Point 100i

b

x

H
 100i

b

y

H
  100i

b

z

H
  

r4 Joint 4 CM4 0 0 -10.52 

r4J3 CM4 Joint 3 0 0 -13.77 

 

Description of the calculations: 

 r0 – Vector generalized from Anderson & Pandy (1999), CM0  relative to J3, Table 3.8; 

 r3 – Vector obtained from the separation of CM0 into CM2 and CM3 in relation to J3, Equation 

(3.1); 

 0 0 3 2 2
3

3

J C
r m r m

r
m

  (3.1) 

 r0J2 – Vector calculated from the difference between r0J1 x coordinate with the length of 

segment II (LII); 

 r2 – Assumption, CM2 is considered to be exactly in the middle position of segment 2, so this 

vector is obtain from dividing r0J1 by two and subtracting r0J2; 

 r1 – Vector generalized from Anderson & Pandy (1999), CM1 relative to J1, Table 3.8; 

 r3J2 – Vector obtained from the difference between rJ32 and r3; 

 rJ32 – Vector obtained from the sum of r0 and r0J2; 

 rJ3C2 – Vector obtained from the sum of rJ32 and r2; 

 r30 – Vector obtained from the difference between r0 and r3; 

 r02 – Vector obtained from the difference between rJ3C2 and r0; 

 r0J1 – Vector generalized from Anderson & Pandy (1999), J1 relative to CM0, Table 3.9; 

 r4 – Vector generalized from Anderson & Pandy (1999), CM4 relative to J4, Table 3.8; 

 r4J3 – Vector generalized from Anderson & Pandy (1999), J3 relative to CM4,Table 3.9. 

 

3.2.3. Inertias and Radius of Gyration 

For this section, once again, few information was available, so the base data is referenced 

again to Anderson & Pandy (1999), Table 3.14. 
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Table 3.14 - Summary of the relevant information (Right Leg and Foot) for the model, 

regarding the inertias presented by Anderson & Pandy (1999). 

Inertias 

 
x (kg/m2) y (kg/m2) z (kg/m2) 

Hind-foot (
0
I ) 0.0013 0.0039 0.0037 

Toes  (
1
I ) 0.0001 0.0001 0.0002 

As written above, one assumption was made, the inertia of segment III (
III
I ) this inertia was assumed 

to be the product of an inertial scaling factor with the inertia of segment 0 (
0
I ). The scaling factor was 

formulated as: 

 

2

0 0

100 26.67%III III
m L

m L
  (3.2) 

 
0III

I I   (3.3) 

The scaling factor formulation arrived from the inertia formula 2I m L  .So the product of 
0
I   by the 

product of the masses ratio with the square of the lengths ratio gives 
III
I . The inertia of segment II 

was calculated using the Parallel Axis Theorem, Equation (3.4). 

 

2 2 2 2

0 0
2 2 2 2

0 0
2 2

0

( )

( )
x IIIx III IIIx IIx II IIx IIx x IIIx III IIIx II IIx

y IIIy III IIIy IIy II IIy IIy y IIIy III IIIy II IIy

z IIIz III IIIz IIz II IIz I

I I m r I m r I I I m r m r

I I m r I m r I I I m r m r

I I m r I m r I 2 2

0
( )

Iz z IIIz III IIIz II IIz
I I m r m r

  (3.4) 

Where 
0 0 0

, ,
x y z
I I I stand for the inertias of segment 0 in the three main directions; , ,

IIIx IIIy IIIz
I I I  the 

same for segment III and , ,
IIx IIy IIz
I I I  for segment II. , ,

IIIx IIIy IIIz
r r r  and , ,

IIx IIy IIz
r r r  are the distances 

between the parallel axis that pass through the center of mass of segment III and segment II 

respectively along the three main directions. The final inertial values, relative to the centers of mass, 

are presented in Table 3.15. 

Table 3.15 - Segments Inertias. 

Inertias 

 
x (kg/m2) y (kg/m2) z (kg/m2) 

Segment I  (
I
I ) 0.0001 0.0001 0.0002 

Segment II  (
II
I ) 0.0006 0.0007 0.00073 

Segment III  (
III
I ) 0.00035 0.00104 0.00099 

Segment IV (
IV
I ) 0.0477 0.0048 0.0484 
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These inertias were rotated using the Mohr’s circle to convert them into the referential used in this 

work. The foot inertias converted to the new referential are shown in Table 3.16. 

Table 3.16 - Segments inertias converted into the new referential (after using the Mohr's 

circle). 

Inertias 

 
x (kg/m2) y (kg/m2) z (kg/m2) 

Segment I (
I
I ) 0.0001 0.0001 0.0002 

Segment II (
II
I ) 0.0006 0.00065 0.00073 

Segment III (
III
I ) 0.0004 0.001 0.001 

 

Off diagonal inertias were discarded, due to the increase of computational effort and due to their small 

value (Anderson & Pandy, 1999). Using the following formula (De Leva, 1996): 

 
2

% %
i b i i i
I M m L r   (3.5) 

where  
i
I  is the segment inertia about a principal axis, 

b
M  the mass of the considered subject, %im  

the segment mass percentage, 
i
L  the segment length and %

i
r the mean relative radius of gyration of 

the segment about the considered axis. The mean relative radiuses of gyration are shown in Table 

3.17. 

Table 3.17 - Segments mean relative radius of gyration about the principal axes. 

 

 

 

 

 

 

 

 

 Summarizing this chapter, an anthropometric complete summary is presented in Table 3.18. 

This table takes into account the generalized info previously presented: Table 3.10, Table 3.11, Table 

3.12, Table 3.13 and Table 3.17; and reports the segments lengths, masses, inertias and the positions 

of the centers of mass in relation to the adjacent joint as a function of a general foot length (𝐿𝑓), body 

height (𝐻𝑏) and body mass (𝑀𝑏). 

 

Radius of Gyration 

 
x y z 

Segment I ( %
I
r ) 30.29 30.29 42.84 

Segment II ( %
II
r ) 39.81 41.18 43.70 

Segment III ( %
III
r ) 21.94 34.21 34.28 

Segment IV ( %
IV
r ) 27.11 25.31 8.60 
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Chapter IV 

4. Multibody Formulation 

Important and relevant results arising from complex mechanical systems that undergo large 

displacements and rotations have been the target of many studies and analysis by the scientific 

community. The evolution of computational power, acquisition instruments and mathematical tools 

allowed the use of multibody approaches, which facilitate the systematic formulation and solution of 

complex and non-linear equations of motion (Silva, 2003). A Multibody system is defined as an 

assembly of two or more bodies that are joined together by kinematic pairs (joints), having the 

possibility of relative movement between them due to the application of external forces, Figure 4.1 (De 

Jalón & Bayo, 1994; Silva, 2003).  

There are two main types of analyses that can be performed in these systems: Kinematic 

analysis and Dynamics analysis, the last one is divided in Forward dynamic analysis and Inverse 

dynamic analysis. In order to describe the position and orientation of each element of the multibody 

system a set of coordinates must be specified, although there are many types of coordinates capable 

of doing so, in the present work Fully Cartesian coordinates (Natural coordinates) (De Jalón & Bayo, 

1994) were chosen. During the next sections a brief introduction to the multibody formulation used in 

the software Apollo is presented. 

 

4.1. Fully Cartesian Coordinates 

The position and orientation of a rigid body in a three dimensional space are described using 

the Cartesian coordinates of a set of points and unit vectors. Generally points are located in important 

positions of the mechanical system, such as extremities and joints, on the other hand, vectors are 

used to define rotational and direction axes of the joints. The use of natural coordinates to describe 
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rigid bodies avoids the introduction of any kind of angular variables to describe the orientation and 

rotation of each element. Another advantage of this formulation is the possibility of two adjacent rigid 

bodies to share points and vectors, reducing the number of coordinates necessary to describe the 

system as well as the number of algebraic equations needed to define kinematic pairs. Sometimes this 

can come as a weakness of the formulation if the objective is to calculate the internal reaction forces 

developed in the joints. 

 In order to perform kinematic or dynamic analysis of a mechanical system, the Cartesian 

coordinates of every point and vector are described in a column vector q  , the vector of generalized 

coordinates. It is organized as follows: 

 1 1 1 1 1 1{ }TP P P PN PN PN V V V VM VM VMx y z x y z x y z x y zq   (4.1) 

where P  stands for points, V  for vectors, n  and m  are respectively the number of points and 

vectors. The total number of generalized coordinates is given by 3( )nc n m . The coordinates can 

be independent if they vary independently or dependent if they are related by algebraic expressions. 

Multibody formulations with fully Cartesian coordinates imply that the generalized coordinates 

describing the system are dependent, so algebraic relations need to be described in order to relate 

them, at every instant of time. These equations are called kinematic constraint equations and are 

mathematically described in the column vector . 

 

1

1

( )

( )
( , ) 0

( , )

( , )

ns

ns

ns nr

t
t

t

q

q
q

q

q

  (4.2) 

i
 represent the ith  kinematic constraint equations, ns  the total number of scleronomic constraints 

and nr  the number of rheonomic constraints. The scleronomic constraints are the ones which do not 

have the explicit time variables, they are used to describe rigid body properties and kinematic pairs; on 

the other hand rheonomic constraints are the ones which have explicit time variables, they are 

associated with driver actuators. The sum of these variables gives the total number of holonomic 

constraints (nh ns nr ).  
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Figure 4.1 - General mechanical system modeled using a multibody approach. 

 

4.2. Kinematic Analysis 

 In kinematic analysis the motion of the system is studied, and the position, velocity and 

acceleration of every element are analyzed independently of the external forces that produced it. To 

calculate the positions that satisfy the equation of kinematic constraints, the kinematic consistent 

positions, it would be necessary to solve the Equation (4.2). However, their non-linear behavior 

requires the use of numerical methods, such as the Newton-Raphson method to calculate the 

consistent position of the system during the period of analysis. Briefly, this is an iterative method that 

achieves quadratic convergence near the solution; the error in each iteration is proportional to the 

square of the error in the previous iteration. The Newton-Raphson method is based on the 

linearization of Equation (4.2), which results from its replacement by the first two terms of its 

expansion in a Taylor series, evaluated with an initial approximation vector 
i
q . So, for a given time t , 

Equation (4.2) comes as the following linear equations:   

 ( , ) ( , ) ( )( ) 0t ti q i iq q q q q   (4.3) 

( )
q i
q is the Jacobian matrix of the constraints, evaluated at the approximate solution 

i
q , composed 

by the partial derivatives of each kinematic constraint with respect to the generalized coordinates 

vector. Mathematically this matrix is expressed as: 
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1 1 1

1 2

2

1

1

( )

nc

m

n

nh nh

nc

q q q

q
q

q q

q q   (4.4) 

Where nh  is the number of constraint equations and nc  the number of dependent coordinates. Being 

an iterative procedure, 
+1i

q q  represents an approximate solution of Equation (4.2) and it stops 

when the norm of residual 
+1i i i

q q q  is less than a specified tolerance. So, Equation (4.3) can 

be expressed as: 

 ( ) ( )
q i i i
q q q   (4.5) 

The velocity is calculated differentiating Equation (4.2) in order to time. 

 
( , ) ( , ) ( , )

( , , ) 0
d t t t d

t
dt t dt

q q q q
q q

q
  (4.6) 

Where ( )/t t,q is the partial derivatives vector in respect to time, ( )/t,q q  is the Jacobian 

matrix and /d dtq  is the vector of generalized velocities q . The right-hand-side of the velocity 

equation can be defined as the vector ( )t  and comes as: 

 
( , )

( )
t

t
tq

q
q   (4.7) 

 The steps presented to calculate the velocity vector can be repeated to calculate the 

acceleration vector, but instead of differentiating the kinematic constraints Equation (4.2) it’s 

necessary to differentiate the velocity constraint Equation  (4.7) in respect to time. 

 
( , , )

( , , , ) ( ) 0t

d t
t

dt q q q

q q
q q q q q q   (4.8) 

t  is the vector that contains the partial derivatives of vector with respect to time. The right-hand-

side of the acceleration equation can be defined as the vector ( , , )tq q  and comes as: 

 ( , , ) ( )
t

t
q q q
q q q q q   (4.9) 

 It’s important to refer the problem arising from the existence of redundant constraints in the 

vector ( , )tq . These redundant constraints contribute with linear dependent lines in the Jacobian 

matrix, making it rank-deficient, causing Equation (4.5) to fail calculating the generalized coordinate 

vector, ending prematurely the kinematic analysis. Many approaches were developed to overcome 

this problem; one of them is the least-squares formulation (used in the code of the Apollo software), it 

is defined as: 
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 ( ) ( ) ( ) ( )T T
q i q i i q i q iq q q q q   (4.10) 

 

4.3. Constraint Equations 

 When using Natural coordinates to analyze mechanical systems, there are three types of 

kinematic constraints to take into account:  

 Rigid body constraints – Responsible for maintaining the rigid body characteristics of each 

element in the system; 

 Joint constraints – Used in the definition of kinematic pairs and topology of the system; 

 Driver constraints – Prescribe the motion of the system’s driving elements.  

Rigid body constraint and rotational driver constraints are identically formulated from the 

mathematical point of view, so they are presented together in the next section. 

 

4.3.1. Rigid Body and Rotational Driver Constraints 

Rigid body constraints are structural constraints; they are introduced in the analysis to preserve 

rigid body properties. When describing a rigid body with Natural coordinates, using a set of points and 

unit vectors, the rigid body properties are responsible for the maintenance of constant distance 

between any two points of the element and for the preservation of constant angles between any two 

vectors. In order to define the number of rigid body constraints of a given body, it is necessary to 

subtract the number of degrees of freedom to the number of Cartesian coordinates. The mathematical 

description of the constraints approached in this section (rigid body and rotational driver) can be 

defined with the same algebraic expression, the scalar product between two vectors, u  and v  , given 

by: 

 ( , ) cos( , ( )) 0SP tt L L t
v u

q v u v u   (4.11) 

where L
v
and L

u
are the lengths of vectors u  and v and , ( )tv u  is the angle defined between them. 

In Table 4.1 a detailed description of the possible applications of the scalar product constraint is 

presented. 

The scalar product constraint presents a quadratic dependency on the generalized 

coordinates; therefore its contribution to the Jacobian matrix is linear and it’s given by: 

 
( )T

SP T T T T T T T

q
0 0 0

v u v u
u v u v

q q q
  (4.12) 
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Table 4.1 - The most common applications of the scalar product constraint and their 

respective physical meaning. Vectors , ,
i j k
r r r  and 

l
r  are the Cartesian coordinates of 

points , ,i j k  and l  and unit vectors a  and b , used in the definition of rigid bodies (Silva, 

2003). 

Constraint 

Description 
v  u  L

v
 L

u
 ,v u  Graphical representation 

Constant 

distance 

between points 

i  and j  

( )
j i
r r   ( )

j i
r r  ij

L   
ij
L  0   

 

Unit vector a   a  1  1  0  
 

Constant angle 

between unit 

vectors a  and

b   

a  b  1  1    

 

Constant angle 

between 

segment 
ij
r  

and unit vector

a   

( )
j i
r r  a  ij

L  1    

 

Constant angle 

between 

segments 
ij
r  

and klr   

( )
j i
r r  ( )

l k
r r  ij

L  
kl
L    

 

Orthogonal unit 

vectors 
a  b  1  1  / 2   

 

Rotational 

driver about a 

revolute joint 

located in point 

i  ,using 

segments  ijr  

and
kl
r  

( )
j i
r r  ( )

k i
r r  ij

L  
ik
L  ( )f t   

 

Translational 

driver defined 

between point

i  and point j  

belonging to 

different rigid 

bodies 

( )
j i
r r  ( )

j i
r r  ( )L f t   ( )L f t  0  
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 The resultant right-hand sides of the velocity and acceleration constraint equations are 

respectively given by: 

 
, ( )

( ) sin( , ( ))SP
t

t L L t
tv u

v u
v u   (4.13) 

and 

 ( , ) ( ) 2( )SP SP T

t
t tq v u   (4.14) 

where 

 

2
2

2

, ( ) , ( )
( ) cos( , ( )) sin( , ( ))SP

t

t t
t L L t t

t tv u

v u v u
v u v u   (4.15) 

A great number of mechanical systems can be described using the procedure described in the 

previous section. However when rigid bodies have a more complex structure other approaches have 

to be applied, for example the Linear Combination constraint (Silva, 2003). In the present work these 

formulations will not be addressed. 

 

4.3.2. Kinematic Joint Constraints 

 Joint kinematic constraints are used to describe the relative motion between the different 

elements of a mechanical system restricted by a kinematic pair. The algebraic equations that describe 

the kinematic constraint relate the natural coordinates of two rigid bodies, constraining their movement 

and consequently reducing the number of degrees of freedom. Only the joints used in the present 

work will be detailed in the next sections. 

 

4.3.2.1. Spherical Joint 

The spherical joint represents a ball and socket type of joint that restricts the movement to the 

rotations around the three axes (3 DOF’s); it restrains the motion between the two rigid bodies (the 

three translations), as depicted in Figure 4.2. In a formulation with natural coordinates there are two 

ways to model this joint: 1) sharing a point between the two rigid bodies, with no need to introduce any 

joint constraints equations; 2) introducing a proper joint constraint. In this last case there are two 

different points belonging to the two rigid bodies that share the same position in space. So this relation 

comes as: 

 ( ) 0SPH

n m
q r r   (4.16) 

Where nr  and mr  represent the position of pointsn  andm  in the global reference frame. 
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Figure 4.2 - Representation of a spherical joint. 

 

4.3.2.2. Revolute Joint 

 The revolute joint represents a hinge joint that restricts the movement to the rotation of the 

rigid bodies around the unit vector used to describe the joint axis (1 DOF), Figure 4.3; it restraints the 

motion between the two bodies (the three translations) and two rotations. Once again, there are two 

ways to model this joint: 1) sharing a point between the two rigid bodies, with no need to introduce any 

joint constraints equations; 2) introducing proper joint constraints. Regarding the last case, the first 

joint constraint that has to be applied is the same as the one described by Equation (4.16), two 

different points in space share the same position in space. The second joint constraint arises from the 

consideration of vector u and its replacement by two different unit vectors a  andb  that belong to 

different rigid bodies and that have the same components in space. The mathematical relation is 

expressed by: 

 ( ) 0REV q b a   (4.17) 

 Revolute joints can also be used to describe axial rotation between elements. This procedure 

is described by the use of two points that are shared between two different rigid bodies, or, if needed 

using proper joint constraint equations. In this last case, the joint constraint equation results from 

applying Equation (4.16). 

 

Figure 4.3 - Representation of a revolute joint. 
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4.3.2.3. Universal Joint 

 The universal joint represents two hinge joints that restrict the movement to the rotation of the 

rigid bodies around two axes (2 DOF’s), Figure 4.4; it restraints the motion between the two bodies 

(the three translations) and one rotation. There are two ways to define this joint model: implicitly 

sharing a point between the two rigid bodies, and in this case, it is necessary to generate an 

expression that guarantees the constant angle between the vectors (vide Table 4.1). If the joint is 

defined explicitly, an additional constraint equation must be considered, in order to ensure that the two 

points that define the kinematic pair share the same spatial position as in Equation (4.16). 

 

Figure 4.4 - Representation of a universal joint. 

 

4.4. Dynamic Analysis 

The study of the relation between the motion and its causes – forces and moments of force - 

it’s called Dynamics. The premise behind a dynamic problem is to understand the action of these 

forces and torques in the dynamic response multibody system, considering also its inertial 

characteristics – mass, inertia and center of mass position. In the present work only the two maind 

dynamic problems will be presented – forward dynamic analysis and inverse dynamic analysis (De 

Jalón & Bayo, 1994). 

 

4.4.1. Forward Dynamics 

The forward dynamics problem permits simulating the motion of a multibody system, when a 

set of known forces and moments is applied. Such problems are used to simulate the evolution of a 

system over a given time interval (De Jalón & Bayo, 1994). 

 

4.4.1.1. The principle of virtual power 

 The motion equations of a constrained multibody system can be obtained using several 

procedures. In the present work the Principle of Virtual Power is reflected due to the fact that it is the 

one used by the Apollo software.  The principle establishes that the sum of the virtual power produced 

by the inertial and external forces acting in a mechanical system must be zero in any instant in time. 

Mathematically the principle is expressed as: 
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 * * *

1

0
nc

T
i i

i

P f q q f   (4.18) 

where *q  is a virtual velocity vector that represents a set of imaginary velocities, it belongs to the null 

space of the Jacobian matrix: 

 * 0T
q q   (4.19) 

vector f  represents all the generalized forces that produce virtual power and it is defined as: 

 f Mq g   (4.20) 

The termMq  stands for the inertial forces, with M  defined as the global mass matrix and q  the 

vector of generalized accelerations. The term g  represents the generalized external applied forces 

including the velocity-dependent inertial forces, in which the centrifugal and Coriolis forces are part. 

Regarding the force vector f  it must be noted that the internal forces, the ones associated with the 

kinematic constraints, are not included in the previous equation because they do not produce virtual 

power, because they are associated in action/reaction pairs. Nevertheless, these forces can be 

calculated using the Lagrange multiplier method (Silva, 2003): 

 T
qg   (4.21) 

where g  is a generalized force vector containing the internal constraint forces, and is the Lagrange 

multipliers vector. Physically, the rows of the Jacobian matrix represent the direction of the constraint 

forces and the vector of Lagrange multipliers their magnitude. Taking into account Equations (4.18)

,(4.20) and (4.21),  and knowing that the product T T
qq  belongs to the null space of the Jacobian 

matrix, then the principle of virtual power can be expressed as: 

 * * ( ) 0T TP qq Mq g   (4.22) 

4.4.1.2. Equations of Motion 

 In a multibody system with nc  generalized coordinates and nh  holonomic constraints, it is 

always possible to find nc nh  arbitrary virtual accelerations and nh  Lagrange multipliers that make, 

in Equation (4.22), the term T
qMq g  to be null. This term represents the equations of motion, 

and it is rewritten as: 

 T
qMq g   (4.23) 

This expression stands for a second order ordinary differential equation (ODE) with nc  equations and  

nc nh unknowns, which correspond to the generalized acceleration vector q  and to the vector of 

the Lagrange multipliers .  To calculate the solution of Equation (4.23), nh   additional equation are 

needed, to ensure that the equations of motion and the kinematic restrictions are fulfilled, the 

additional equations should be provided by Equation (4.2). Despite being more adequate, achieving a 
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solution would be much more complicated; instead the procedure presented in Equation (4.9) is 

applied. So the rearrangement is presented as: 

 
0

T
q

q

q gM
  (4.24) 

In order to transform Equation (4.24) in a system of second order ODE’s, the Lagrange multipliers 

have to be eliminated from it. This result on an ODE system expressed in terms of generalized 

acceleration vector and can be integrated in time, given the initial conditions for the position and 

velocity vectors. These conditions need to be consistent with kinematics of the multibody system: 

 0( ) 0q   (4.25) 

 0 0( )tqq   (4.26) 

 

4.4.1.3. Lagrange Multipliers and Internal Forces 

 As discussed before, the internal forces represent the forces that the system generated 

internally in order to satisfy the kinematic constraints that define the system. There are two methods 

that provide explicit results for the reaction forces. The first is used when kinematic joints are modeled 

using shared points and unit vectors, meaning that the kinematic restrictions defining these joints are 

imposed implicitly, making the calculation described before unable to generate results regarding the 

internal forces. The procedure used to overcome this situation establishes for each reporting time 

step, the dynamic equilibrium equations of each rigid body, and obtains the reaction forces as the 

solution of these equations (De Jalón & Bayo, 1994). The second procedure, the one applied in the 

present model, consists in creating a mechanical system in which there are no shared points or 

vectors. In this expanded system, additional points and unit vectors are defined in order to allow all 

kinematic joints to be explicitly defined, using the method defined in the section Kinematic Joint 

Constraints. Both procedures have their disadvantages; the first requires a complex implementation 

and requires additional information of the topology of the system. The second is computationally less 

efficient and it increases the size of the system, it should only be used when the calculation of the 

reaction forces at the joints is necessary. 

 

4.4.1.4. Baumgarte stabilization method 

In the present work the method chosen to solve the equations of motion is the direct 

integration method, explained in the next section (De Jalón & Bayo, 1994). In order to assure the 

convergence of the method, a stabilization procedure is essential. The Baumgarte method converts 

unstable differential equations into stable ones (Baumgarte, 1972). From the instable acceleration 

differential equation: 

 0 qq   (4.27) 

Applying the Baumgarte stabilization method: 
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 22 0   (4.28) 

Given the first and second derivatives of the constraints equations: 

 q

q

q

q
  (4.29) 

Using Equation (4.29) in Equation (4.28): 

 * 22 ( )qq   (4.30) 

Replacing by
*
 in Equation (4.24), results the stabilized system: 

 20 2 ( )

T

q

q q

gqM

q
  (4.31) 

The constants  and  must be adjusted for every analysis between 10 and 50. 

 

4.4.1.5. Integration of the Equations of Motion 

 The next step of the analysis is the integration of the equations of motion, this step is essential 

to advance the analysis in time. Analytical solutions are impractical to obtain, due to the high level of 

complexity of these equations, so numerical methods have to be applied. In particular, several efficient 

integration algorithms can be used to compute solutions for first order ODE’s, giving specific initial 

conditions, this is called first-order initial-value problems. 

 To use this kind of algorithms, the second-order ODE’s presented by Equation (4.31) has to 

be transformed into a first-order initial-value problem. This is achieved with a numerical process called 

direct integration. Two vectors have to be defined: the y  containing the generalized velocities and 

accelerations for the actual time step t  and y  which contains the generalized coordinates and 

velocities for the next time step t t . Therefore: 

 
t

t

q

q
y  and 

t t

t t

q

q
y   (4.32) 

 In the present work an integrator based on the predictor-corrector Adams-Moulton-Bashforth 

methods is used to perform the integration of the first order initial-values problems. See Figure 4.5 for 

the flow-chart of the Initial Value Method adopted in the software. 
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4.4.1.6. Mass Matrix for the Basic Rigid Body 

 So far the equations that were discussed could be applied by any type of generalized 

dependent coordinates. In this section the methodologies discussed are specific to Natural 

coordinates. When using this type of coordinates, the rigid bodies can be described by different 

kinematic structures, which depend on the topology of the system and on the type of kinematic joints 

to which they are attached. At a first look, one can think that to describe the mass and inertial 

properties of each different type of rigid body many different mass matrices are needed. In reality all of 

these matrices can be obtained from the mass matrix of a basic rigid body through a coordinate’s 

transformation (De Jalón & Bayo, 1994; Silva, 2003).  An important aspect is that each rigid body has 

a local reference frame rigidly attached and its origin does not need to be coincident with the body 

Figure 4.5 - Direct Integration Algorithm. Flow-chart of the process used to numerically integrate the equations of 

motion of mechanical systems. 
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center of mass and the direction of its reference axes does not need to be coincident with the body’s 

center of mass, Figure 4.6. 

 

Figure 4.6 - Basic rigid body. The kinematic structure of the basic rigid body is made of two points (i and j) and 

two non-coplanar unit vectors (u and v). Point p represents a generic point belonging to this rigid body. A local 

reference frame (οξηζ) is rigidly attached to the body, having its origin in point ο, which is not necessarily its 

center-of-mass. The reference frame (xyz) represents the inertial reference frame (Silva, 2003). 

 The virtual power generated within the rigid body by the inertial forces is expressed in its 

integral force by: 

 * *TP dr r   (4.33) 

Where  stands for the density of the rigid body and r  andr  are respectively the virtual velocity and 

acceleration vectors of the generic point p , belonging to the rigid body. Applying an appropriate 

coordinate transformation, these vectors can be written in terms of the rigid body’s generalized 

velocities and accelerations vectors. This transformation is achieved considering that vector r (vector 

defining the position of point p ) can be described by the Cartesian coordinates of segment 
ij
r  and 

unit vectors u  andv , as: 

 1 2 3( )i j ic c cr r r r u v   (4.34) 

1
c , 

2
c  and

3
c  are the coordinates of segment 

ip
r  in the 3D base formed by vectors

ij
r ,u  andv . So the 

previous equation comes as: 

 1 3 1 3 2 3 3 3(1 )

i

jc c c c

r

r
r I I I I

u

v

  (4.35) 

In a compact form: 

 
e

r Cq   (4.36) 
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where 3I  stands for a three by three identity matrix, C  is the transformation matrix (constant in time), 

and 
e
q  represents the vector of generalized coordinates describing the basic body. Equation (4.36) 

can be differentiated twice yielding: 

 
e

r Cq   (4.37) 

 
e

r Cq   (4.38) 

 where   
e
q and 

e
q   are the generalized velocity and acceleration vectors of the basic rigid body. The 

numerical values of 
1
c ,

2
c  and

3
c can be obtained by rewriting Equation (4.34) in the local coordinate 

system of the rigid body: 

 1 2 3' ' c ( ' ') c ' 'i j i cr r r r u v   (4.39) 

In a matrix form: 

 

1

2

3

( ' ') ' 'i ij

c

c

c

r r r u v X c   (4.40) 

Where 'X  contains the local coordinates of segment 
ij
r  and vectors u  andv  in the reference frame 

of the rigid body, so it can be inverted. Solving the equation for vector c : 

 1' ( ' ')
j

c X r r   (4.41) 

 Using the virtual power of the inertial forces expression again, Equation (4.33), and replacing 

the Equations (4.37) and (4.38), results in: 

 * *T T
e eP dq C Cq   (4.42) 

*
eq  and eq  are independent of the body volume  and can be isolated from the integral, resulting in 

the mass matrix expression for a basic rigid body: 

 T dM C C   (4.43) 

Expanding the matrices: 

 

2 2

1 1 3 1 1 3 2 1 2 3 3 1 3 3
2 2

1 1 3 1 3 1 2 3 1 3 3
2

2 1 2 3 1 2 3 2 3 2 3 3
2

3 1 3 3 1 3 3 2 3 3 3 3

1 2c c c c c c c c c c

c c c c c c c
d

c c c c c c c c

c c c c c c c c

I I I I

I I I I
M

I I I I

I I I I

  (4.44) 

Through integration (De Jalón & Bayo, 1994), Equation (4.44) becomes: 
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1 11 3 1 11 3 2 12 3 3 13 3

1 11 3 11 3 12 3 13 3

2 21 3 21 3 22 3 23 3

3 31 3 31 3 32 3 33 3

( 2 ) ( ) ( ) ( )

( )

( )

( )

m ma z ma z ma z ma z

ma z z z z

ma z z z z

ma z z z z

I I I I

I I I I
M

I I I I

I I I I

  (4.45) 

wherem  is the total mass of the rigid body, 
i
a , is the first area moments of the rigid body and 

ij
z  the 

second area moments of the rigid body. This mass matrix is constant in time, so it is only evaluated in 

the beginning of the analysis. It depends of a set of ten different values: total mass of the rigid body, 

the coordinates of the center of mass in the local reference frame and the six different elements of the 

inertia tensor, also calculated with respect to the local reference frame. This section presents the 

mass matrix of an element with two basic points and two non-collinear unit vectors. Sometimes it is 

not possible to identify this collection of points and vectors, so other simple kinematic structures are 

used instead, however no further explanation will be given regarding the topic. The detailed 

explanation of this other structures can be found in De Jalón & Bayo (1994) and Silva (2003). 

 

4.4.1.7. External applied Forces and Moments 

 Dynamic analysis of mechanical systems involves the application of external forces an 

moments to the rigid bodies. The use of natural coordinates requires the transformation of these 

external forces or moments into generalized forces that can be assembled into the generalized force 

vector. The required steps for these transformations are detailed in the work of De Jalón & Bayo 

(1994) and Silva (2003), further explanation on this topic exceeds the purpose of the present work. 

 

4.4.2. Inverse Dynamics 

The inverse dynamic problem allows calculating the forces and torques that produce a specific 

movement. The problem requires the position, velocity and acceleration of the systems and all the 

external forces applied (De Jalón & Bayo, 1994). The equations of motion used to describe this type of 

analysis are the same as the one utilized in forward dynamics. However, the objectives of the analysis 

are different and so the unknown terms to calculate in those equations.  

In order to perform an inverse dynamic analysis, it is required that the motion corresponding to 

the task under study is already known and it is consistent with the kinematic restrictions describing the 

system. This means that the Cartesian coordinates of a set of points and unit vectors need to be 

obtained in a previous stage and that they have to fulfill the kinematic constraints Equations (4.2). 

The generalized velocity and acceleration vectors can be calculated from the generalized 

coordinates, using two different procedures: 

1) Application of the generalized coordinates to the kinematic equations describing the 

velocities and accelerations of the system. Equations (4.7) and (4.9).  

2) Interpolation of the trajectories of each generalized coordinate using cubic splines and 

then obtaining their velocity and acceleration using spline differentiation techniques. 

The following stage involves the construction of the mass matrices and generalized force 

vectors of all vectors describing the mechanical system and their respective assembly in the system’s 
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equation of motion. The stabilization solution and integration methods are no longer needed since the 

motion of the system is fully known.  

To solve the inverse dynamics problem and to obtain its internal and external forces, there are 

several methods that can be applied. However in this work only two of them are considered: the 

Lagrange multipliers method and the Newton method. 

 

4.4.2.1. Lagrange Multipliers Method 

 The Lagrange multipliers method considers that each external force is paired with a kinematic 

constraint that can be any of the types referred previously, including driver actuators. Drivers are used 

to guide specific degrees of freedom, according to an initially prescribed kinematics or according to a 

known guiding function. So, additional (in a number equal to the degrees of freedom of the system) 

constraint equations are introduced in the Jacobian matrix of the constraints. The equations of motion, 

given by Equation (4.23), are assembled and solved in an inverse dynamics perspective according to 

the Lagrange multipliers vector, as follows: 

 T

q
g Mq   (4.46) 

 The Lagrange multipliers associated with the driving constraints are used to calculate the 

external forces associated with each degree of freedom. The rest of the Lagrange multipliers are used 

to calculate the internal forces developed in the kinematic pairs and rigid bodies. 

 

4.4.2.2. Newton Method 

 The Newton method considers that with each degree of freedom is associated an external 

actuator that produces an unknown external force required for the system to reproduce the observed 

motion. To accomplish this, the generalized force vectorg  from the equation of motion is divided in 

two parts: 

 
e d

g g g   (4.47) 

e
g  is the term containing all the known external forces and 

d
g  is the term associated with the unknown 

external forces produced by external actuators. The negative signal is a matter of convenience of the 

calculations. The vector related to the unknown external forces is expressed by the product of the 

matrix containing the geometrical information regarding the direction of the external forces produced 

by the actuator ( ) with the vector containing the unknown magnitudes of these external forces (
d
f ). 

 T

d d
g f   (4.48) 

Replacing Equations (4.47) and (4.48) in the motion equation, results in: 

 { }T T

e
d

q
g Mq

f
  (4.49) 

In a compact form: 
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 T

q
g Mq   (4.50) 

As one can notice Equation (4.50) is very similar to Equation (4.46), proving that both methods are 

very similar. The main difference is that the Newton method leads directly to the determination of the 

magnitude of the external driving forces (Silva, 2003).  

 If a system is over-constrained there are more unknowns than equations of motion, meaning 

that an infinite set of solutions can be obtained from Equation (4.46) and (4.50). In order to obtain an 

unique solution, the minimum norm condition is used (De Jalón & Bayo, 1994). 

 

4.5. Leg and Foot Model Implementation 

One of the main goals of this thesis is the implementation of the leg and foot model in the 

academic software Apollo, a multibody dynamics software, coded in Fortran, that has been developed 

along the years at Instituto Superior Técnico (Silva, 2003).This software makes use of Fully Cartesian 

coordinates, described in the previous sections. Typically, for a better definition of the multibody 

system, the points that define it are located strategically in joints and extremities of the rigid bodies 

and unit vectors are used to define rotational and direction axes of joints, avoiding the introduction of 

angular variables, since these are implicit in the model (De Jalón & Bayo, 1994).  

The first step to implement the model in the Apollo software consist in the creation of a *.mdl 

file (Modeling file). This file requires the mass and inertias of each segment (presented in Chapter III), 

the local coordinates of the points of each segment and the local vectors that define the joints. The 

calculations regarding the local coordinates of the points are described in Table 4.2 and Table 4.3 

followed by a detailed description of them. A complete visual description is presented in Figure 4.7. 
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Figure 4.7 - Model scheme for the implementation in Apollo. Representation of the four segments, the 

corresponding centers of mass and important modeling vectors (Table 4.2 –and Table 4.3) – Right Foot. 

As referred before the points defining the model are located strategically in joints and extremities of 

the rigid bodies, so the points (depicted in Figure 4.7) correspond to: 

P1 – Extremity of the toes; 

P2 and P3 – Metatarsophalangeal joint; 

P4 and P5 – Midtarsal joint; 

P6 - Extremity of the calcaneus; 

P7 – Talocalcaneal joint; 

P8 – Talocrural joint; 

P9 – Knee joint. 

The information regarding the local vectors connecting the points is detailed in the following tables 

(Table 4.2 and Table 4.3). These vectors are once again presented with the formulation described in 

Section 3.2.1. 
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Table 4.2 – Foot vectors description - Coordinates relative to the local reference frame of the 

segments which is attached. 

Vectors (Foot) 

 Initial Point Final Point 100i

f

x

L
 100i

f

y

L
 100i

f

z

L
 

s1 CM1 P1 17.04 0.00 -6.85 

s2 CM1 P2 = P3 -9.96 0.00 -6.85 

s3 CM2 P2 = P3 18.15 0.00 -7.04 

s4=-r2 CM2 P5 = P4 -14.85 0.00 7.04 

s5 CM3 P5 = P4 15.40 0.00 -4.69 

rII P8 P6 -23.41 0.00 -28.00 

s6 CM3 P6 -24.60 0.00 -13.69 

s7 CM3 P7 rIx – 1.20 rIy rIz +14.31 

rI P8 P7 rIx rIy rIz 

r3 P8 CM3 1.20 0.00 -14.31 

Table 4.3 - Leg vectors description - Coordinates relative to the local reference frame of the 

segments which is attached. 

Vectors (Leg) 

 Initial Point Final Point 100i

b

x

h
 100i

b

y

h
 100i

b

z

h
 

s8 CM4 P8 0.00 0.00 -13.77 

s9 CM4 P9 0.00 0.00 10.52 

 

The results presented in the previous tables are based on the anthropometric information reported in 

Table 3.10, Table 3.12 and Table 3.13.The detailed explanation of the computation of each individual 

model vector is described as follows: 

 s1 – Vector obtained from the sum of the length of segment I described in Chapter III with 

vector s2. Component Y was considered to be null;  

 s2 – Vector equal to symmetric r3 (Table 3.12); 

 s3 – X component of the vector obtained from the sum of the length of segment II (Table 3.10) 

with the X component of vector s4. Y and Z were considered to be the symmetric components 

of vector s4, in order for the center of mass to be coincident with the segment; 

 s4 – Vector equal to symmetric r2 (Table 3.12); 

 s5 – Vector equal to r3J2 (Table 3.12); 

 rII – X component of the vector obtained from the difference between the X component of 

vector rJ32 (Table 3.12) and the length of segment III; Y component assumed to be null; Z 

component is equal to the height of segment III (hIII); 

 s6 – Vector obtained from the difference of rII with r3 (Table 3.12); 

 s7 – Vector obtained from the difference of rI with r3 (Table 3.12); 
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 rI – Experimental vector obtained by connecting the medium point of the talocrural axis with 

the medium point of the talocalcaneal axis (Dul & Johnson, 1985). This vector represents the 

massless link; 

 r3 – Vector r3 (Table 3.12); 

 s8 – Vector r4J3 (Table 3.13); 

 s9 – Vector equal to symmetric r4 (Table 3.13). 

It is crucial to understand that having this information (Table 4.2 and Table 4.3) together with the 

information presented in Chapter III (Table 3.18), the model is easily formulated for each individual, 

only requiring the knowledge of the individual height, foot size and weight. In order to build the 

kinematic model, a complete description of the kinematic joints is needed (De Jalón & Bayo, 1994; 

Silva, 2003). As stated previously, the study of the internal forces generated in the joints is achieved 

through the consideration of explicit joints. The detailed explanation of the four explicit joints, 

considered in the foot model, is as follows: 

 Metatarsophalangeal Joint – Revolute Joint defined by two different points, P2 and P3 

belonging to the two rigid bodies (Body 1 and Body 2, Figure 4.8) that share the same position 

in space, and by two different unit vectors, v1 and v2, that belong to different rigid bodies 

(Body 1 and Body 2, Figure 4.8)  and that have the same components in space; 

 Midtarsal Joint – Universal Joint defined by two different points, P4 and P5 belonging to the two 

rigid bodies (Body 3 and Body 4, Figure 4.8)  that share the same position in space, and two 

different unit vectors, v3 (vertical axis) and v4 (horizontal axis), that belong to different rigid 

bodies (Body 3 and Body 4, Figure 4.8) and that maintain a right-angle between them; 

 Talocalcaneal Joint – Revolute Joint defined by P7 and by v5; 

 Talocrural Joint – Revolute Joint defined by P8 and by v6. 

The theoretical value of these joints vectors is presented in Table 4.4 and the final scheme of the 

model is depicted in Figure 4.8. 

Table 4.4 - Theoretical joint vectors description based on Anderson & Pandy (1999). 

Joint Vectors 

 Description x y z 

v1 Metatarsophalangeal joint axis -Sin(18o) -Cos(18o) 0.00 

v2 Metatarsophalangeal joint axis -Sin(18 o) -Cos(18o) 0.00 

v3 Midtarsal joint (vertical axis) 0.00 0.00 1.00 

v4 Midtarsal joint (horizontal axis) 0.00 -1.00 0.00 

v5 Talocalcaneal joint axis Cos(35.3o)Cos(19.8o) Cos(35.3o)Sin(19.8o) Sin(35.3o) 

v6 Talocrural joint axis -Sin(6o)Cos(8o) -Cos(6o)Cos(8o) -Sin(8o) 

v7 Knee joint 1.00 0.00 0.00 
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Figure 4.8 - Apollo Modelling scheme. (Red) Vectors; (Blue) Bodies; (Green) Highlight of the points that limit the 

coincident segments; (Doted lines) Massless Link. 

An essential detail of this model is that the non-intersecting axis of the Talocalcaneal Joint and 

the Talocrural Joint. This is achieved by considering a massless link that maintains a constant 

distance between the axis, depicted by the segment between P7 and P8 in Figure 4.8. Despite being 

spatially separated these joints together work as a Universal Joint. This behavior is explained through 

the constraints detailed further. Another important detail is the consideration of segment II (mid-foot 

and fore-foot), as well as segment IV (leg), as two coincident segments (connecting the same points) 

with half the mass of the entire segment. This formulation is useful to calculate the internal rotation 

angles and moments of these segments and to avoid the use of spherical joints, which introduce some 

difficulties in the inverse dynamic analysis.  

To compute the parameters that define the model, such as the explicit joints and the massless 

link, it is necessary to build kinematic constraints, as seen in Section 4.3.2. The constraints can be 

divided into two types: Inner Product Constraints and Superposition Constraints. The first assures a 

constant inner product formulation between vectors and segments. The second assures the 

superposition of points or vectors. So, the model requires three superposition constraints: 

1. Between P3 and P2; 

2. Between P4 and P5; 

3. Between v1 and v2; 

And five inner product constraints: 

1. That assure a 90º angle between v3 and v4; 

2. That assure a constant length between P7 and P8; 

3. That assure a constant angle between v5 and v6; 

4. That assure a constant angle between the segment defined by P7 and P8, and v5; 

5. That assure a constant angle between the segment defined by P7 and P8, and v6 

The first and third superposition constraints are used to define the revolute joint between Body 1 and 

Body 2, the metatarsophalangeal joint. The second superposition constraint along with the first inner 
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product constraint defines the universal joint between Body 3 and Body 4, the midtarsal joint. The last 

four inner product constraints are used to define the massless link between Body 4 and Body 5; 

imposing a constant length and constant angles necessary to define the universal joint behavior to v5 

and v6. This behavior represents the talocrural and talocalcaneal joint. 
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Chapter V 

5. Acquisition and Data Treatment 

 In this chapter, a detailed explanation of the methods used to analyze the reliability of the 

model during gait is presented. Two approaches were used for this purpose: the first, a kinematic 

evaluation, based on the angles produced at the joints; the second, a kinetic evaluation, based on the 

inverse dynamics formulation, were the internal reaction forces and the moments were studied, taking 

into account the ground reaction forces. 

 

5.1. Acquisition Protocol 

The first stage comprehends the kinematic data acquisition using a markers protocol. The data 

was acquired in LBL – Lisbon Biomechanics Laboratory at Instituto Superior Técnico. The trials made 

use of the fourteen infrared reflective cameras existent in the laboratory – Qualisys ProReflex and two 

video cameras. The software applied for the acquisition was the Qualisys Track Manager (QTM). In 

order to acquire the data from external forces, three AMTI-OR6-7 force platforms (508mm x 464mm) 

were used. The software used to treat the data was the Qualisys Track Manager (QTM) version 2.8 

(Qualisys AB, 2013). The sampling frequency was 100Hz for the cameras and 1000Hz for the force 

plates. 

The model proposed in this work is innovative regarding the segments that it considers, so the 

markers protocol to apply to the model had to be developed. The basis of this procedure is the 

Milwaukee Foot Model (MFM) (Abuzzahab et al., 1993), Figure 1.3, with some variations. The 

developed protocol uses thirteen reflective markers for each foot/leg complex, in which two of them 

are only use for static acquisitions, as depicted in Figure 5.1 and Table 5.1. The reflective markers 
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used in the trials are spherical with flat bases, passive and they have 19mm of diameter, except for 

the ones used only in static acquisitions that have 11mm of diameter.  

Table 5.1 – Markers set protocol description. (s) Markers that were used only in static 
acquisitions. 

Marker Anatomical Location 

M1 Medial aspect of the Hallux 

M2 Top head of the Phalange II 

M3 Medial aspect of the head of Metatarsal I 

M4 Lateral aspect of the head of Metatarsal V 

M5 Medial apex of the tuberosity of the navicular 

M6 Lateral apex of the tuberosity of the cuboid 

M7 Apex of the medial Malleolus 

M8 Apex of the lateral Malleolus 

M9 Posterior aspect of the Calcaneus 

M10(s) Super-medial aspect of the talus (approximally on top of the synovial sheath of the extensor 

hallucis longus) 

M11(s) Postero-lateral “corner” of the heel 

M12 Medial apex of the head of the tibia 

M13 Lateral apex of the head of the fibula 

 

 

Figure 5.1 – Markers set protocol. (Left) Foot top view; (Right) Leg and rear-foot back view. Blue markers used 
only in static acquisitions. 
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5.2. Data Treatment Protocol 

5.2.1. Data Treatment using QTM 

In order to perform a kinematic and kinetic analysis, it is crucial to previously treat the data. 

The markers trajectory acquisition and treatment is performed using the QTM software. An Automatic 

Identification of Markers (AIM) model with 22 reflective markers (26 in static acquisitions) was defined 

for an efficient assignment of the trajectories. The acquisitions were divided by gait cycles, using the 

initial contact (IC) of the foot with a force plate, as the first event. It is important to notice that one 

should consider at least 10 frames before the IC of the foot being analyzed and at least 10 frames 

after the second IC of the same foot. This consideration is essential to perform a correct filtering in the 

Apollo software. The treated data was then exported to a *.tsv file (table-separated value) to be 

treated in Matlab software. 

 

5.2.2. Evaluation of the kinematic data 

The kinematic markers position data was exported from the QTM software as a *.tsv file, and 

directly analyzed by a routine developed in Matlab.  The first step of the evaluation comprehended the 

use of a third order low pass digital Butterworth filter with 6Hz as frequency of cut. The filtered data 

correspondent to each marker was then assigned to a three column matrix, where each column 

represented respectively the x, y and z coordinates, and each line represented the frame. Using this 

information it was possible to define vectors that were used to calculate the angles between the model 

segments. Taking into account Figure 5.1, a description of the vectors used is presented in Table 5.2. 
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Table 5.2 - Vectors used in Matlab to calculate the kinematic angles. 
i
M  represent the 

coordinates of the respective marker. All the vectors were normalized. 

Description Vector Formula 

Knee Joint 
Knee
v   

13 12
M M   

Talocrural Joint 
Talocrural
v   

8 7
M M  

Midtarsal Joint 
Midtarsal
v   

6 5
M M  

Metatarsophalangeal Joint Metatarsophalangeal
v   

4 3
M M  

Leg z Axis Leg
z   7 812 13

2 2

M MM M
 

Leg x Axis Leg
x  ( )

Leg Knee
z v   

Leg y Axis Leg
y  ( )

Leg Leg
z x  

Rear-foot x axis 
RF
x  5 6

92

M M
M  

Rear-foot z axis 
RF
z  ( )

Midtarsal RF
v x  

Rear-foot y axis 
RF
y  ( )

RF RF
z x  

Mid-foot & Fore-foot x Axis 1 
1MFFF

x  3 4 5 6 
2 2

M M M M
 

Mid-foot & Fore-foot z Axis 1 
1MFFF

z  1
( )
Metatarsophalangeal MFFF
v x  

Mid-foot & Fore-foot y Axis 1 
1MFFF

y  
1 1

( )
MFFF MFFF
z x  

Mid-foot & Fore-foot x Axis 2 
2MFFF

x  3 4 5 6 
2 2

M M M M
 

Mid-foot & Fore-foot z Axis 2 
2MFFF

z  
2

( )
Midtarsal MFFF
v x  

Mid-foot & Fore-foot y Axis 2 
2MFFF

y  
2 2

( )
MFFF MFFF
z x  

Toes x axis 
Toes
x  * 3 4

2 2

M M
M  

Toes z axis 
Toes
z  ( )

Metatarsophalangeal Toes
v x  

Toes y axis 
Toes
y  ( )

Toes Toes
z x  

Massless Link 
Massless
v   7 810 11

2 2
s s

M MM M
 

Talocalcaneal Joint 
Talocalcaneal
v  

10 11s s
M M  

Rear-foot Top 
RFT
v  5 6 10 11

2 2
s s

M M M M
 

Note:
*

2
M  has the x, y coordinates of 2M  and the z coordinate of 1M . The use of two different Cartesian Axes 

for the Mid-foot & Fore-foot segment is related with the calculation of the angles and moments for the internal 

rotation, explained further.  
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Using the four-quadrant inverse tangent Matlab function (atan2, receiving as arguments, the 

cross product between the vectors of interest and the dot product of the same vectors) it was possible 

to evaluate the progression of the angles along the time of the aquisition. The formulation is presented 

in Table 5.3 and Figure 5.3. 

Table 5.3 - Kinematic Angles formulation. 

Description Angle Formula 

Dorsiflexion and 

Plantarflexion 

Metatarsophalangeal 

Joint 

  

1
  1 1tan2(( ),( )) ( 1)

2MFFF Toes MFFF Toesa x z x z   

Dorsiflexion and 

Plantarflexion 

Midtarsal Joint 

 

2
 1 1tan2(( ),( )) ( 1)

2RF MFFF RF MFFFa z x z x  

Abduction and 

Adduction 

Midtarsal Joint 

 

3
 1 1tan2(( ),( ))

2RF MFFF RF MFFFa y x y x  

Dorsiflexion and 

Plantarflexion 

Talocrural Joint 

 

4
 tan2(( ),( ) ( 1)

2RF Leg RF Lega x z x z  

Inversion and Eversion 

Talocalcaneal Joint 

 

5
 tan2(( ),( ) ( 1)

2RF Leg RF Lega y z y z   

Internal Rotation 

Mid-foot & Fore-foot 

 

6
 2 2tan2(( ),( ))

2MFFF Metatarsophalangeal MFFF Metatarsophalangeala z v z v

 

Internal Rotation 

Leg 7
 tan2(( ),( ))

2Leg Talocrural Leg Talocrurala x v x v  

 

The subtraction of 
2

 is related with the fact that the angle being calculated with the four-quadrant 

inverse tangent does not represent directly the angle of the respective joint motion, as depicted in 

Figure 5.2. As one can see from Table 5.3 and Figure 5.3 the vectors used to calculate the 

movements are deviated from 0 ,n n  angles. This happens because the outcome of this 

function always defaults to angles ranging from , . So in order to represent the real kinematic 

motion angle, the subtraction is needed. The product by the scale factor ( 1)  defines the signal 

associated with each movement. For the Dorsiflexion and Plantarflexion, the convention used was: 

positive and negative respectively. For the Abduction and Adduction the principle used was: positive 

and negative respectively. Regarding Inversion and Eversion, the used convention was: positive and 
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negative respectively. Finally regarding the internal rotation, the principle used was: positive for the 

movement from the inside (medial) to the outside (lateral) and negative otherwise.  

 

Figure 5.2 - Kinematic angles representation. 

 

Figure 5.3 - Kinematic vectors used for the calculation of the kinematic angles. 

5.2.3. Data preparation to be used in Apollo 

To perform an inverse dynamic analysis using the Apollo software, four types of files are 

needed: *.mdl (modelling files), *.sml (simulation files), *.frc (forces file) and *.dat (data files). Each 

analysis requires one modelling file and one simulation file. The first, as briefly approached in Section 
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4.5, comprehends the information regarding the model: masses, inertias, local coordinates of the 

points and vectors defining each segment, parameters that define the drivers that guide each degree 

of freedom and the parameters regarding the joints that connect the segments. The modelling file can 

receive more information but that won’t be addressed in the present work. The second covers the 

information regarding the initial position of each segment center of mass, the initial Euler angles, and 

angular velocities in the global reference frame. The simulation file also requires the time parameters 

regarding the analysis and the gravity field vector. The data files are used to guide each degree of 

freedom of the system (DOF) and therefore they comprehend the information regarding the system 

drivers, existing one for each DOF. For each analysis the software also requires one force file that 

comprehends the ground reaction forces and their application points. After the simulation is 

completed, the software generates a *.out file that contains: global coordinates of the model points 

and vectors, velocities, accelerations, center of mass global positions, moments and internal reaction 

forces. 

 

5.2.3.1. Conversion of the kinematic data to the model (Simulation and Modeling 

Files) 

The model implemented in the modelling and simulation files was already detailed in Section 

4.5. This section is intended to explain the process used to merge the multibody model with the 

acquired experimental data. Taking into account the information presented in Table 4.2, Table 4.3, 

Figure 4.8 and Table 5.2, and knowing that the kinematic vectors are presented in a global reference 

frame and that the model vectors are the conversion of those vectors into the correspondent body 

local referential, a resume table (Table 5.4)  is presented. A remark has to be made to the distinct axis 

between 1MFFF and 2MFFF . The axis of 1MFFF correspond to the axis of Body 2 and the axis of 

2MFFF correspond to the axis of Body 3 (Figure 4.8). Defining two different axis on the same segment 

allows the calculation of the internal rotation of the rigid bodies. 
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Table 5.4 - Description of the conversion between the kinematic vectors and the theoretical 
vectors. 

Description 

Kinematic Vectors 

(Global RF) 

Table 5.2 

Theoretical Vectors (Local RF) 

Table 4.2, Table 4.3, Table 4.4 and Figure 4.8 

Body 

Figure 4.8 

Metatarsophalangeal Joint Metatarsophalangeal
v  

1
v  1 

Toes z axis 
Toes
z  

9
v  1 

Metatarsophalangeal Joint Metatarsophalangeal
v  

2
v  2 

Mid-foot & Fore-foot z Axis 2 
2MFFF

z  
3
v  3 

Rear-foot y axis 
RF
y  

4
v  4 

Talocalcaneal Joint 
Talocalcaneal
v  

5
v  4 

Talocrural Joint 
Talocrural
v  

6
v  6 

Leg x Axis Leg
x  

7
v  5 

Leg y Axis Leg
y  

8
v  5 

Toes x axis 
Toes
x  

2 1

2 1

P P

P P

 
1 

Mid-foot & Fore-foot x Axis 1 
1MFFF

x  
4 3

4 3

P P

P P

 
2 

Mid-foot & Fore-foot x Axis 2 
2MFFF

x  
4 3

4 3

P P

P P

 
3 

Rear-foot x axis 
RF
x  

6 5

6 5

P P

P P

 
4 

Rear-foot Top 
RFT
v  

7 5

7 5

P P

P P

 
4 

Massless Link 
Massless
v   

8 7
P P  - 

Leg z Axis Leg
z   

9 8

9 8

P P

P P

 
5/6 
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5.2.3.2. Data files preparation 

The preparation of the data files containing the information about the system drivers was 

carried out using the Matlab software. Each data file can contain one of five different types of 

information:  

1) Angles between one unit vector and one segment (vector defined by two points);  

2) Angles between two unit vectors;  

3) Angles between two segments (vectors defined by two points);  

4) Global coordinates of one point (x,y,z); 

5) Global coordinates of a vector (x,y,z);.  

Further explanation on the construction of data files is presented in Appendix A. To guide the degrees 

of freedom of the system ten drivers were used, whose calculation is further explained in Table 5.5. 

The reason why the formulation used to calculate the driving angles vary from the one used to 

calculate the kinematic angles (Table 5.3) is related with the simplicity of the model. In order to build 

an efficient computational model some vectors were not formulated in the Apollo modelling file, so the 

driving files are only providing angles between explicit segments or vectors (Table 5.4). 

Table 5.5 - Drivers description and formulation. 

Description 
Driver 

Type 

Formula 

(Using the kinematic vectors) 

Dorsiflexion and Plantarflexion 

(Metatarsophalangeal Joint) 
1 

1 1
tan2(( ),( ))

MFFF Toes MFFF Toes
a x z x z   

Dorsiflexion and Plantarflexion 

(Midtarsal Joint) 
1 

2 2
tan2(( ),( ))MFFF RF MFFF RFa z x z x  

Abduction and Adduction 

(Midtarsal Joint) 
1 

2 2
tan2(( ),( ))MFFF RF MFFF RFa x y x y  

Dorsiflexion and Plantarflexion 

(Talocrural Joint) 
3 tan2(( ),( ))Leg RFT Leg RFTa z v z v (P) 

Inversion and Eversion 

(Talocalcaneal Joint) 
1 tan2(( ),( ))Leg RF Leg RFa z y z y  

Internal Rotation 

(Mid-foot & Fore-foot) 
2 2 2

tan2(( ),( ))MFFF Metatarsophalangeal MFFF Metatarsophalangeala z v z v  

Internal Rotation Leg 2 tan2(( ),( ))Leg Talocrural Leg Talocrurala z v z v  

Knee Point Coordinates 4 
12 13

( ) / 2M M  

Knee Vector 1 Coordinates 5 Leg
x  

Knee Vector 2 Coordinates 5 Leg
y  

(P) means that both vectors Leg
z and RFT

v were projected on the plane normal to vector Ankle
v .   

 

As one can deduce, the number of drivers prescribed to the system is higher than the number of 

DOF’s of the system (Driver type 4 and 5 count as one driver per axis, so three each). So, sixteen 
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drivers are being prescribed for only thirteen DOF’s which mean that some are redundant due to the 

model and software convenience. The routine developed exports this information automatically into 

different *.dat files. 

 

5.2.3.3. Force file preparation 

The information regarding the Ground Reaction Forces (GRFs) from the three force platform 

and the center of pressure curve (COP) at each time step was exported from the QTM software as 

three *.tsv files, one for each platform, and processed by a Matlab routine.  The first step of the 

evaluation comprehended the use of a third order low pass digital Butterworth filter with 16Hz as 

frequency of cut. The filtered data correspondent to each platform was then assigned to a six column 

matrix, where the first three columns represented respectively the x, y and z coordinates of GRFs and 

the following three the x, y and z coordinates of the COP, and each line represented the frame. 

Another important parameter is also calculated by the routine, a vector containing information that 

allows the Apollo software to know in which segment of the model is the force being applied. In the 

end of the routine the information is exported automatically into a *.frc file. Further explanation on the 

construction of force files is presented in Appendix A. 

 

5.2.4. Data Treatment Summary 

This section is intended to present a summary of how all the data, reported in this document, 

is gathered to produce the results. The first step is the introduction of the subject specific parameters 

(height, weight and foot length), obtained in the laboratory, in the anthropometric tables (Table 3.10, 

Table 3.11, Table 3.12, Table 3.13, Table 3.17 and their summary, Table 3.18) and in the model 

formulation tables (Table 4.2 and Table 4.3). This allows the formulation of great part of the 

modulation file. The following step comprehends the application of the markers set protocol and the 

laboratory acquisitions. The third step implies the data treatment in the QTM software followed by the 

application of the Matlab routines. These routines generate: the rest of the information needed to 

complete the modulation file (through static acquisitions), the data required to build a simulation file 

(through dynamic acquisitions), the data and force files and the kinematic results. Having the four files 

required by the Apollo to perform an inverse dynamics analysis, the out file is created. This file 

contains the dynamic results, as a matter of visualization, this data is treated again using Matlab to 

generate the kinetic plots. A flow-chart with this information is presented in Figure 5.4.  
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Chapter VI 

6. Results and Discussion 

In order to test the proposed foot model, two sets of trials were performed. These acquisitions 

had as subjects a healthy man (23 years old, 87kg, 1,87m and with a foot size of 27cm) and a healthy 

woman (23 years old, 52kg, 1,53m with a foot size of 21cm), both with no history of gait disorders. The 

subjects were asked to walk through a walkway equipped with the force plates, without them being 

influenced by their existence. The markers set protocol used and the laboratory configuration existent 

at the time of the acquisitions were already described in Chapter V. From all the trials performed, five 

trials from each subject were chosen to report the results. These trials, as referred previously, 

represent an entire gait cycle, using the Initial Contact (IC) of the right foot with the second force plate, 

as the first event. So all the results analyzed derive from the right foot. The graphical outcome from 

both subjects will be presented simultaneously in the plots, using solid lines to represent the mean of 

the five trials and light areas to characterize the mean more (upper limit) or less (lower limit) the 

standard deviation (calculated at each time step). Subject 1 corresponds to the healthy man and 

subject 2 to the healthy woman, Figure 6.1. 
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Figure 6.1 - Subject 1 (Right); Subject 2 (Left). 

 

6.1. Kinematic Results 

6.1.1. Joint Angles 

Joint angular displacement has been widely used to detect gait disorders. This evaluation is 

performed by detecting deviations from typical patterns. In this work, typical patters will be used to 

assess the validity of the results produced by the model. The variety of foot joint angles results 

existent in the bibliography is limited, usually the authors stay limited to the angle produced at the 

talocrural joint, and therefore the first result to be presented is the referred one, Figure 6.2. 

 

Figure 6.2 - Talocrural Joint Angle, Dorsiflexion (+) and Plantarflexion (-).  

The pattern presented in Figure 6.2 is a well-known pattern for a normal talocrural angle 

variation during gait (Abuzzahab, Harris, Kidder, & Johnson, 1994; Bruening et al., 2012a; Gonçalves, 

2010; Kidder et al., 1996; Leardini et al., 2007; Lundgren et al., 2008; MacWilliams et al., 2003; 

Winter, 1991). Two peaks (maximum and minimum) stand out in this pattern. The maximum relates 

with the terminal stance phase [30-50%], were the foot reaches its maximal dorsiflexion angle. The 

minimum is related to the maximum plantarflexion angle, which occurs during the initial swing [60-

70%]. The evaluation of the offsets is similar to the one reported by Bruening et al. (2012a) that uses a 

similar marker set protocol.  
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Proceeding to the analysis of the angle produced at the metatarsophalangeal joint, Figure 6.3. 

 

Figure 6.3 - Metatarsophalangeal Joint Angle, Dorsiflexion (+) and Plantarflexion (-). 

The result presented in Figure 6.3 is similar to the one presented by Bruening et al. (2012a) and 

Kidder et al. (1996), an immediate deduction can be taken from it; the angle values barely reach 

negative values. This means that pronounced plantarflexion at the metatarsophalangeal joint during 

gait is an uncommon event. One can notice that the angle values reach 0º during [20-40%] of the 

stride, corresponding to the midstance, when the foot is flatten on the ground. After this phase the 

angle values increase rapidly, this happens during the terminal stance, when the foot is touching the 

ground only with the toes. This increase is more pronounced in subject 2 but still within the range of 

healthy values.  

Figure 6.4 represents the angle produced due to plantarflexion and dorsiflexion at the 

midtarsal joint. 

 

Figure 6.4 – Midtarsal Joint Angle, Dorsiflexion (+) and Plantarflexion (-).  

It is interesting to notice in Figure 6.4 that this joint during a gait cycle is always at plantar flexion, this 

is due to the arches of the foot. During the loading response and midstance phases, the weight of the 

whole body is being applied on the foot in contact with the ground. This event leads to the compliance 

of the arch, and so the plantarflexion is attenuated (the angle becomes less negative), the angle 

increases, between [0-50%] of the stride. The instant the foot leaves the ground is clearly represented 
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by an abrupt decrease in the angle value, becoming more negative, accentuating the plantarflexion. 

This pattern is once again supported by Bruening et al. (2012a) and Kidder et al. (1996).  

Figure 6.5 represents the outcome regarding the adduction and abduction at the midtarsal 

joint. 

 

Figure 6.5 – Midtarsal Joint Angle, Abduction (+) and Adduction (-).  

The signal notation used to evaluate this angle is the same as the one used by Kidder et al. (1996) 

and inverse to the one used by Bruening et al. (2012a). This results in an inverted graphic comparing 

to the second reference. However the pattern is similar to both of them, barely presenting angle 

changes until [50-70%] of the stride when the foot is adducted at the pre-swing and initial swing 

phase. The difference between subjects is due to the possible misplacement of the Calcaneus marker 

in subject 1. It was seen that a small deviation from the intended position in this marker generates 

erroneous results and due to the size of the markers it is sometimes difficult to have the perception of 

the right position.  As one can see in Table 5.3, the adduction/abduction angle is calculates using RFy , 

this vector calculation is based on the position of this marker, so a misplacement originated in its 

location can explain the  difference in the angles results.  

Proceeding to the analysis of the inversion/eversion angle at the talocalcaneal joint, Figure 

6.6. 

 

Figure 6.6 - Talocalcaneal Joint Angle, Inversion (+) and Eversion (-). 
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The pattern presented in Figure 6.6 is identical to the one presented by Bruening et al. (2012a) and 

Kidder et al. (1996), however the signal notation used to evaluate this angle is the same as the one 

used in the first reference and inverted regarding the second. Both subjects present foot inversion 

during the majority of the gait cycle, and small angle variations. The offset presented in subject 1 is 

probably due the misplacement of the calcaneus marker.  

Figure 6.7 presents the results for the internal rotation angle of the mid-foot and fore-foot 

segment. 

 

Figure 6.7 – Mid-foot and Fore-foot Internal Rotation. From Medial to Lateral (+). 

This result is not discussed in the bibliography, and as one can see from the graphic, the reason is the 

small variation presented and the proximity to 0º. The small angle values also justify the apparently 

high standard deviation. This means that this segment barely rotates over itself. Figure 6.8 stands for 

the angle variation that characterizes the leg internal rotation. 

 

Figure 6.8 - Leg Internal Rotation. From Medial to Lateral (+). 

Once again, this result is rarely presented in the bibliography; however it provides a valid 

understanding of the leg rotation. As one can see from Figure 6.8, both participants present a positive 

angle during the entire gait cycle; meaning that the leg points toward the lateral side. However during 

the stance phase [0-60%], a slight rotation of the leg to the medial side is verified in both subjects. 

During the swing phase [60-100%] the opposite happens, the rotation to the lateral side is 

accentuated. 



   82 
 

 

6.2. Kinetic Results 

6.2.1. Ground Reaction Forces 

The GRF results, Figure 6.9, were normalized in respect to the subject body mass. Evaluating 

this results, one can perceive that they represent characteristic patterns (Gonçalves, 2010; Silva, 

2003; Winter, 1991) The standard deviations are very small, proving that the ground reaction forces 

provide a well-defined and conserved curve. This curve is of extreme importance because it allows a 

good measure of comparison between healthy and pathological subjects. Notice that the reaction 

forces in Y are very small comparing to the others, leading to a higher standard deviation. Another 

interesting aspect of these results is the first peak in the ground reaction force in the transversal 

component (Z plot); it represents the body weight acceptance (normalized).  

 

. 

 

Figure 6.9 - Ground Reaction Forces. (Top)(Left) Reaction Force in X, (Right) Reaction Force in Y; (Bottom) 
Reaction Force in Z. 

 

6.2.2. Joints Moments of Forces 

Moments of force, result from the combined action of the muscular, ligament and friction 

forces acting to cause body rotation about a specific axis. In normal gait, the joint angles do not reach 

their extreme limits and the friction forces are minimal. So, the moment can be interpreted as due to 

muscle forces only (Winter, 1991). The inverse dynamic analysis, allows the calculation of the internal 

forces in kinematic pairs (Lagrange multipliers methods). Adding a driving actuator (constraint 

equation) for each DOF of the model, the simulation enables the calculation of the Lagrange 

multipliers associated to each joint torque (Silva, 2003). 
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 The present model has sixteen drivers’ actuators, producing the correspondent forces and 

joint moments of force. It should be noted that except for the drivers correspondent to points and 

vectors trajectories, that do not produce joint moments of force but instead they generate driving 

forces. From the initial sixteen, only seven will be approached, the ones regarding the kinematic angle 

drivers presented previously, all of them were normalized in respect to the subject body mass. The 

signals convention adopted was the one used by Winter (1991) and Silva (2003). This formulation 

considers the extensor moment as positive, due to the attempt of pushing the body away from the 

ground (Winter, 1991) and the flexor moment as negative for the opposite reason. Basically, the 

ground reaction forces produce a physiological moment that has to be opposed by the body 

(Gonçalves, 2010). The moment generated by this opposition is the one that will be presented. The 

first result to be analyzed is the moment generated at the talocrural joint, Figure 6.10.  

 

Figure 6.10 – Talocrural Joint Moment. Plantarflexion (+) and Dorsiflexion (-). 

 The pattern presented in Figure 6.10 is a well-known result (Bruening et al., 2012b; 

Gonçalves, 2010; Silva, 2003; Winter, 1991). Evaluating the graphic one can see that it shows a 

plantarflexion moment almost during the entire stance phase [10-60%]. So the ground reaction forces 

are generating a physiologic dorsiflexion moment and the body has to respond producing a contrary 

plantarflexion moment. During the swing phase the moment is kept null, there are no ground reaction 

forces acting.  

Proceeding to the analysis of the moment generated at the metatarsophalangeal joint, Figure 

6.11 . 
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Figure 6.11 – Metatarsophalangeal Joint Moment. Plantarflexion (+) and Dorsiflexion (-). 

 The previous graphic shows a similar result as the one obtain by Bruening et al. (2012b), 

moment values rounding zero. However during the initial contact [0-10%] the results show a 

dosrflexion torque, this is the body response to the physiologic plantarflexion generated by the ground 

reaction forces. Again the moments are kept null during the swing phase.  

The evaluation of Figure 6.12 is similar to the one applied to Figure 6.10, the result shows 

plantarflexion moments during the stance phase [10-60%], except for the initial contact. The ground 

reaction forces are generating a physiologic dorsiflexion moment and the body has to respond 

producing a contrary plantarflexion moment. During the swing phase the moment is kept null, there 

are no ground reaction forces acting.  

 

Figure 6.12 – Midtarsal Joint Moments. Plantarflexion (+) and Dorsiflexion (-). 

Figure 6.13 presents the abduction and adduction moments generated during a gait cycle. A 

first look to this result may lead to some erroneous conclusions. The first thing that as to be 

approached are the small values of the torque, this is due to the small value of the ground reaction 

force at Y (Figure 6.9), responsible for generating the physiological moment that will be opposed by 

the body. So if the physiological moment is small, the opposing body torque response will also be 

small. Comparing to the result presented by Bruening et al. (2012b), the  result from subject 2 is 

identical, abduction moment during the majority of the stance phase. Subject 1 results are again due 

to the misplacement of the Calcaneus marker, already discussed.   
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Figure 6.13 - Midtarsal Joint Moments. Adduction (+) and Abduction (-). 

 Proceeding to the analysis of the moment generated at the talocalcaneal joint, Figure 6.14. 

The outcome of subject 2 is identical to the one presented by Bruening et al. (2012b), showing 

eversion moment during the majority of the stance phase. The erroneous result of subject 1 is the 

result of the misplacement of the Calcaneus reflective marker as stated before, so it will not be 

addressed. 

 

Figure 6.14 - Talocalcaneal Joint Moments. Eversion (+) and Inversion (-). 

The analysis of Figure 6.15 shows different results between the subjects. Due to the small 

amount of subjects and to the lack of references, an expected result is missing, so both can be 

evaluated. The results show that for subject 2 the ground reaction forces are generating a physiologic 

internal rotation moment from the medial side to the lateral side and the body has to respond 

producing a contrary moment (from lateral to medial). The contrary happens to subject 1; the torque is 

being generated from the medial side to the lateral side.  
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Figure 6.15 – Mid-foot and Fore-foot Internal Rotation Moment. From Lateral to Medial (+). 

The result presented in Figure 6.16, show that the moment generated due to the leg internal 

rotation is very small. This is due to the small ground reaction forces in the Y direction. If the 

physiological moment generated by the ground reaction forces is small, the body response will be a 

small opposing moment as well. Once again, no reference results can be used to compare this 

pattern. 

 

 

Figure 6.16 - Leg Internal Rotation Moment. From Lateral to Medial (+). 

 

6.2.3. Joints Internal Reaction Forces 

This section is intended to demonstrate the robustness and reliability of the Apollo software 

with the calculation of the joints internal reaction forces, a relevant information from the biomechanical 

point of view, and that many times is discarded. The joint internal reaction forces have to agree with 

Newton’s third law, the joints have to act as the reaction force pair for the ground. So the results have 

to be symmetric to the ones presented in Section 6.2.1, as Figure 6.17 demonstrates. 
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Figure 6.17 – Internal Reaction Forces: (1st Row) Midtarsal Joint; (2nd Row) Metatarsophalangel Joint; (3rd Row) 

Talocalcaneal Joint; (4th Row) Talocrural Joint. (1st Column) X IRF’s; (2nd Column) Y IRF’s; (3rd Column) Z IRF’s. 

 

6.2.4. Graphic Visualization of the model 

In order to visualize the results given by the *.out a Matlab routine was adapted from Veiga 

(2012), animApollo.fig. This routine enables the user to visualize the entire simulation, choosing the 

preview velocity, camera angle, zoom and the camera distance to the model. It also allows the user to 

choose whether he wants the joint vectors and segments centers of mass to be displayed or not, 

Figure 6.18 and Figure 6.19. 
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Figure 6.18 – Model display with the joint vectors and segments center of mass using the Matlab routine 
animApollo.fig 

 

Figure 6.19 - Massless link detail of the model displayed using the Matlab routine animApollo.fig. 

As an example of the routine capacities, Figure 6.20 and Figure 6.21 depict iterations of a gait cycle; 

stance and swing phase respectively. 

 

Figure 6.20 – Stance phase of the gait cycle depicted using the Matlab routine animApollo.fig. (Top)(Left) IC, 
(Center) LR, (Right) MS; (Bottom)(Left) TS, (Right) PS. 
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Figure 6.21 - Swing phase of the gait cycle depicted using the Matlab routine animApollo.fig. (Left) IS, (Center) 
MiS, (Right) TSw. 
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Chapter VII 

7. Conclusions and Future Work 

This thesis arises from a necessity, specifically from the need of a more realistic and reliable 

foot model that would provide new degrees of freedom that the existent models do not present. So the 

propose model is divided into four segments: (1) Leg (tibia and fibula), (2) Rear-foot (calcaneus), (3) 

Mid-foot and Fore-foot (navicular, cuboid, cuneiforms and metatarsals) and (4) Toes (Phalanges). This 

choice emerged from the authors’ laboratory experience. Where a set of movements that were easily 

detected, were not being quantify, especially movements happening at the midtarsal and 

tarsometatarsal joint.  

For the present work the author was aiming to achieve three main objectives. The first 

comprehended the development of an anthropometric table of a four segment leg and foot complex. 

This table would be able to calculate the lengths, masses, inertias and centers of mass positions of 

the bodies that the model requires from three single inputs – weight, height and foot size. The second 

objective regarded the formulation of a three-dimensional multibody leg and foot model, using a 

multibody formulation with natural coordinates, for its implementation in the academic software Apollo 

(Silva, 2003) through a modeling file. The third objective comprehended the application of the model in 

a gait cycle, to study the kinematics and kinetics of the model. This required the formulation of a 

markers set protocol that had the necessary information to represent the proposed model and that 

enabled data processing to generate the remaining files to be used by  the academic software Apollo 

(Silva, 2003).  

In order to fulfill these objectives, several topics had to be addressed to support the author’s 

decisions. Chapter I make an exhaustive literature review, especially regarding kinematic and kinetic 

models, in order to specify the scientific base that surrounds this problematic. Chapter II describes the 
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osteology and arthrology of the system being modeled, giving an inside of the anatomical, 

physiological and biomechanics aspects that the model had to reproduce. Chapter III approaches two 

complete bibliographic references about the foot that sustain the anthropometric measures used in the 

formulation of the model. Chapter IV presents a brief multibody formulation description that governs 

the way that the author modeled the leg and foot system. 

 Regarding the anthropometric table proposed, it was achieved using the work by Anderson & 

Pandy (1999) and Parham et al. (1989). This table was divided in five modules: lengths (Table 3.10), 

masses (Table 3.11), radius of rotation (Table 3.17), and anthropometric vectors (Table 3.12 and 

Table 3.13); summarized in Table 3.18. Starting from these tables, the model, the second goal, was 

promptly generated. In Section 4.5, however some subroutines had to be developed in the software, 

using Fortran, in order to facilitate its implementation. These functions did not influence the core of the 

software, they were mainly implemented to make explicit some subroutines that the user did not have 

any control.  

One of the principal modelling challenges was to separate the Talocrural and the 

Talocalcaneal by a massless link and making this joint to function as a universal joint with a non-right 

angle. The purpose of this idea was to avoid the problem pointed out by Anderson & Pandy (1999) 

that the addition of the talus, due to its small mass, would increase the integration time for the model 

considerably. The implementation of this massless link segment, which works as a universal joint, was 

achieved through the implementation of four inner product constraints (Section 4.5). These constraints 

increase the Jacobian Constraints matrix size but do not influence the coordinate’s vector size 

because the massless link definition uses known points and vector, so the complexity of the model is 

not increased. Another important modelling objective was the implementation of the midtarsal joint, 

which was accomplished due to its formulation as a universal joint with a right angle. The last 

modeling objective was the possibility to study the internal leg rotations and the same for the mid-foot 

and fore-foot segment. This was achieved through the separation of both of these segments into two 

rigid bodies. 

The third objective was achieved through the development of the markers set protocol 

described in Table 5.1 and Figure 5.1. This protocol is easily applied in clinical context; it does not 

need a considerable amount of time to implement as it uses a medium number of marker in its 

definition. The data from de QTM software was analyzed with some routines implemented using the 

Matlab software. These routines allowed the construction of key files that were needed for the Apollo 

inverse dynamics simulation, and for the visualization of the results. The results were evaluated using 

two different approaches; on one hand the comparison between the model results and typical patterns 

for the same data, and on the other hand the evaluation of these results along the gait cycle and 

analyzing their viability. This evaluation was performed along Chapter VI, presenting good and 

promising results for the model. The kinematic angles analysis were in the majority of cases consistent 

with known patterns, the ones that were deviated from the expected values are justified by a 

misapplication of the marker set protocol. The ground reaction forces also fulfilled typical measures.  

Regarding the kinetic moment analysis, once again the model results are in general consistent 

with the bibliography; the ones that deviate from the expected have the same explanation as the ones 

for the kinematic analysis, misapplication of the marker set protocol. So, one can conclude that the 
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massless link formulation assured the typical kinematic and kinetic patterns regarding the 

talocalcaneal joint and the talocrural. The midtarsal joint brought some interesting results regarding 

the compliance of the arch of the foot during a gait cycle, and proved that this degree of freedom 

should not be overlooked. Other results such as the mid-foot and fore-foot internal rotation and the 

abduction/adduction at the midtarsal joint demonstrated that these movements are almost residuals in 

healthy subjects. In conclusion, the model is reliable, presenting the expected patterns for known 

bibliography results, like: the talocrural dorsiflexion/planterflexion angle, the metatarsophalangeal 

dorsiflexion/planterflexion angle and the talocalcaneal inversion/eversion angle. It is also more realistic 

than the common models, presenting innovative results, like the midtarsal plantarflexion/dorsiflexion 

angle, the internal leg rotation, the internal mid-foot and fore-foot rotation angle and the midtarsal 

adduction/abduction angle, despite presenting small values for the last two.  

A brief remark has to be made to the Apollo software. It was proved that this software is as 

reliable and robust software to use in multibody simulations using natural coordinates. It presented 

compelling and trustworthy results that enabled the model validation. This work also contributed to the 

further development of this academic software, essentially giving more freedom to the user to 

implement multibody models. However, the software requires some learning time due to the lack of a 

complete user’s manual. Appendix A is an attempt to bridge part of this gap.  

 

7.1. Future Work 

In this section a brief look into the possibilities that this model provides and into the work that 

has to be done, is presented. For a better division of ideas, a topic structure is presented. 

 The first step to improve the reliability of the model comprehends the performance of more 

trials, using a larger range of subjects; 

 The model can be applied to a hole body model in order to test its influence among the rest of 

the body; 

 The application of a contact detection method to the foot model could provide innovative 

results regarding the foot-ground interaction; 

 The simulation of human movement in forward dynamics using the proposed foot model; 

 The model provided good perspectives to be applied in pathological gait analysis, having a 

larger number of degrees of freedom can enable the evaluation of different gait disorders; 

 The further study around these understudied degrees of freedom can provide some valid 

information to be applied in humanoid robots, in order to make their gait more identical to the 

human gait. 
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Appendix A 

A.  Apollo User Guide 

This Appendix is intended to give an overview on how to create the necessary files to run an 

inverse dynamic simulation in the Apollo software. This summary will only approach the data used in 

the files used to analyze the model described in the present work. 

 

A.1.  Creation of modulation files (*.mdl) 

In this section a brief description on how to build a modulation Apollo file for inverse dynamics 

is given. 

 

Note: Each tag appears only once. 

 

Header 

Tag: *HEADER 

Input: The header input is not important, it serves to introduce the file, and it is basically a small 

description of the modulation. 

Example: 

 

Main Parameters 

Tag: *MAIN PARAMETERS 
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Input: The main parameters are represented by a single line of input. This line has 25 entries listed 

below. When the parameter is not at use, the entry is 0, otherwise is as the description mentions. 

Table A.1 - Apollo modulation file main parameters description. 

Position Description Reference 

1 Number of points NPOINT 

2 Number of vectors NUVEC 

3 Number of rigid bodies NRIGIDBOD 

4 Number of superposition constraints NSUPERPOS 

5 Number of inner product constraints NINNERPROD 

6 Number of cylindrical joints NCYLIND 

7 Number of prismatic joints NPRISM 

8 Number of revolution drivers NKDRV 

9 Number of translational drivers NTDRV 

10 Number of Spring-Damper-Actuator NSDA 

11 Number of Force/Torque NFT 

12 Number of wheels NWHL 

13 Number of car directions NSTEER 

14 Number of biomechanics models NBMDL 

15 Number of FEM Links NFEMLINK 

16 Number of Bushing elements NBE 

17 Number of Sphere Plane contact elements NSPC 

18 Number of Ligaments NLIG 

19 Number of Muscles NMUSCLE 

20 Number of Foot Model NFM 

21 Number of Hill type muscles NMHILL 

22 Number of controllers NCTRL 

23 Number of sensors NSNSR 

24 Number of actuators NACT_CTRL 

 

Example: 

 

 

Ground Body 

Tag: *GROUND BODY 

Input: The first line of input has the number of points that will be defined as ground points and their 

respective indexes. The second line of input has the number of vectors that will be defined as ground 

vectors and their respective indexes. The following lines are the coordinates (x y z) of the points and 

vectors mentioned in the first two lines according to the global referential. The coordinates have to be 

ordered according to their appearance in the first two lines. Notice that this parameter was kept null for 

the analysis presented in this thesis (no ground body was used). However, the tag must be there with 

one 0 in the second line. 

Example: 
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Rigid Bodies 

Tag: *RIGID BODIES 

Sub-Tag: BODY=… 

Input: The first line of input has the body mass and the inertia (Ix Iy Iz). The second line of input has 

the number of points that define the body and their respective indexes. The third line of input has the 

number of unitary vectors that belong to that body and their respective indexes. The following lines are 

the coordinates (x y z) of the points mentioned in previous lines according to the local referential 

followed by the coordinates (x y z) of the unitary vectors. The coordinates have to be ordered 

according to their appearance in the previous lines. 

Example: 

 

 

Superposition Constraint 

Tag: *SUPERPOSITION CONSTRAINT 

Sub-Tag:  SP=… 

Input: Two types of input can be defined: the first one is applied when a shared point is defined and 

the second is applied when overlapping vectors are needed. To distinguish both situations the fifth 

entry works as a flag, it has to be 0 in the first situation and 1 in the second. 

Table A.2 - Superposition Constraint types description. 

Type 1 Body 1 Index Body 2 Index Shared Point in Body 1 Shared Point in Body 2 Flag =0 

Type 2 Body 1 Index Body 2 Index Shared Vector in Body 1 Shared Vector in Body 2 Flag=1 

 

Example: 

 

 

Inner Product Constraint 

Tag: *INNER PRODUCT CONSTRAINT 

Sub-Tag: IP=… 
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Input: Four types of input can be defined: the first one is applied when a mass less link connection is 

required, it implies a constant length between two points (Flag =0); the second type is used when a 

constant angle between two segments defined by two points each is needed (Flag =1); the third type 

is applied when a constant angle between a two point segment and a unit vector is required (Flag =2); 

the fourth type is used when we a constant angle between two unit vectors is defined (Flag =3). The 

details of the input are explained in Table A.3 and Table A.4. 

Table A.3 - Inner Product Constraint types description. 

Type 

1 

Body 1 

Index 

Body 2 

Index 

Flag 

= 0 

Ii Point 

body 1 

Ij Point 

body 2 

Length 

mass less 

link Lij 

 

Type 

2 

Body 1 

Index 

Body 2 

Index 

Flag 

= 1 

Ii Point 

body 1 

Ij Point 

body 1 

Ik Point 

body 2 

Il Point 

body 2 

Length 

body 1 

Lij 

Length 

body 2 

Lkl 

Angle 

θ 

Type 

3 

Body 1 

Index 

Body 2 

Index 

Flag 

= 2 

Ii Point 

body 1 

Ij Point 

body 2 

Iu Vector 

index 

Length 

body 1 Lij 
Angle θ   

Type 

4 

Body 1 

Index 

Body 2 

Index 

Flag 

= 3 

Iu Vector 

index 

Iv 

Vector 

index 

Angle θ     

Table A.4 - Inner Product Constraint types visualization. 

Type 1 

 

Type 2 

 

Type 3 

 

Type 4 

 

 

 

 

 

Mass less link 

Lij 

i 

j 

j 
i 

k l 

θ 

j 

i 

u 

θ 

v 

u 

θ 
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Example: 

 

 

Revolution Drivers 

Tag: *KINEMATIC DRIVERS 

Sub-Tag: DRIVER=n, where n is the number of the *.dat correspondent to this driver. The data files 

must be named as: ‘Driver_n’. 

Input: Six types of input can be defined: the first one is used when a trajectory driver is applied to a 

point (Flag =1); the second type is used when a trajectory driver is applied to a vector (Flag =2); the 

third type is applied when the distance between two point needs to be guided (Flag =3); the fourth type 

is used when the angle between two segments (vectors defined by two points) needs to be guided 

(Flag =4); the fifth type is used when the angle between two unit vectors needs to be guided (Flag =5); 

the sixth type is used when the angle between one segment and one unit vector needs to be guided 

(Flag =6). This input is divided in two lines. The first comprehends the flag, the second the information 

about the bodies, segments and vectors, detailed in Table A.5. 

Table A.5 - Driver types description. 

Type 

1 

Body 1 

Index 

Point 

body 1 
   

 

Type 

2 

Body 1 

Index 

Vector 

body 1 
   

 

Type 

3 

Body 1 

Index 

Body 2 

Index 

Point 

body 1 

Point 

body 2 
 

 

Type 

4 

Body 1 

Index 

Body 2 

Index 

Point 1 

body 1 

Point 2 

body 1 

Point 1 

body 2 

Point 2 

body 2 

Type 

5 

Body 1 

Index 

Body 2 

Index 

Vector 

body 1 

Vector 

body 2 
 

 

Type 

6 

Body 1 

Index 

Body 2 

Index 

Point 1 

body 1 

Point 2 

body 1 

Vector 

body 2 

 

 

Example: 
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A.2.  Creation of simulation files (*.sml) 

In this section a brief description on how to build a simulation Apollo file for inverse dynamics 

is given. 

 

Note: Each tag appears only once. 

 

Header 

Tag: *HEADER 

Input: The header input is not important, it serves to introduce the file, and it is basically a small 

description of the simulation. 

Example: 

 

 

 

Analysis Type 

Tag: *ANALYSIS TYPE 

Input: Two types of input can be introduced: FORWARD or INVERSE depending on the type of 

analysis pretended. 

Example: 

 

 

Initial Information 

Tag: *INITIAL INFORMATION 

Sub-Tag: BODY=… 

Input: The initial information contains the information regarding the first step of analysis about each 

body. This information comprehends the center of mass position (x, y, z) initial Euler angles, and initial 

acceleration. 

Example: 

 

 

Gravity Information 

Tag: *GRAVITY FIELD VECTOR 

Input: The gravity field vector contains the coordinates (x,y,z) that the user wants to attribute to the 

gravity field. 

Example: 
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Animation 

Tag: *DO ANIMATION 

Description: This input is the tag itself, in case of absence the software does not perform the analysis 

animation. 

Example: 

 

 

Centers of Mass Report 

Tag:*REPORT CENTERS OF MASS 

Description: This input is the tag itself, in case of absence the software will not export the position, 

velocity, and acceleration of the centers of mass in each step to the *.out file. 

Example: 

 

 

Read the Forces and Moments file 

Tag: *DISCRETE FORCES AND MOMENTS 

Input: The input is divided in two lines: the first contains the name of the *.frc file; the second contains 

the number of frames under analysis. 

Example: 

 

 

Time information 

Tag: *START/STOP/STEP 

Input: The input is a vector with the information regarding the start time of the analysis, the final time, 

and the step. 

Example: 

 

 

A.3.  Creation of data files (*.dat) 

 There are two types of data files. The first type comprehends the drivers that guide angles 

(type 4, 5 and 6) the second type comprehends the drivers that guide trajectories (type 1 and 2). 

Regarding the first type, its formulation is very simple, the first line presents the analysis number of 

frames and the rest of the lines are divided in two columns. The first column is the time step; the 
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second is the angle correspondent to that time step. Notice that Apollo is not robust enough to deal 

with angles near the interval 0 ,n n . 

Example: 

 

The second type is formulated like the first, but instead of two columns from the first line it has four. 

The first is again the time step; the second, third and fourth comprehend respectively the x, y and z 

coordinates of the point or vector, depending on the type of driver. 

Example: 

 

 

A.4.  Creation of force and moments files (*.frc) 

 The force file is a complex file; it takes into account a large quantity of information. The file 

begins with two lines of guiding information; the software does not read it but they have to be there. 

The third line details the number of force and moments respectively that will be analyzed. The fourth 

line comprehends the information about the bodies that will undergo the influence of the 

force/moment; it details the rigid bodies’ numbers. From the fifth line until the end, the document is 

divided in columns: the first is the frame number; the second is a column containing the rigid body 

number that is under the influence of the force/moment at that frame; the third is the time step; from 

the fourth to the sixth is the value of the force in x, y and z respectively; from the seventh to the ninth 

is the global coordinates (x,  y and z) of the Center of Pressure (COP); from the tenth to the twelfth  is 

the value of the moments in x, y and z respectively (if they are being applied). 

Example: 

 


